1203 lines
41 KiB
C
1203 lines
41 KiB
C
/**************************************************************************/ /**
|
|
* @file cmsis_gcc.h
|
|
* @brief CMSIS Cortex-M Core
|
|
*Function/Instruction Header File
|
|
* @version V4.30
|
|
* @date 20. October 2015
|
|
******************************************************************************/
|
|
/* Copyright (c) 2009 - 2015 ARM LIMITED
|
|
|
|
All rights reserved.
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
- Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
- Neither the name of ARM nor the names of its contributors may be used
|
|
to endorse or promote products derived from this software without
|
|
specific prior written permission.
|
|
*
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
POSSIBILITY OF SUCH DAMAGE.
|
|
---------------------------------------------------------------------------*/
|
|
|
|
#ifndef __CMSIS_GCC_H
|
|
#define __CMSIS_GCC_H
|
|
|
|
/* ignore some GCC warnings */
|
|
#if defined(__GNUC__)
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wsign-conversion"
|
|
#pragma GCC diagnostic ignored "-Wconversion"
|
|
#pragma GCC diagnostic ignored "-Wunused-parameter"
|
|
#endif
|
|
|
|
/* ########################### Core Function Access ########################### */
|
|
/** \ingroup CMSIS_Core_FunctionInterface
|
|
\defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
|
|
@{
|
|
*/
|
|
|
|
/**
|
|
\brief Enable IRQ Interrupts
|
|
\details Enables IRQ interrupts by clearing the I-bit in the CPSR.
|
|
Can only be executed in Privileged modes.
|
|
*/
|
|
__attribute__((always_inline)) __STATIC_INLINE void __enable_irq(void) { __ASM volatile("cpsie i" : : : "memory"); }
|
|
|
|
/**
|
|
\brief Disable IRQ Interrupts
|
|
\details Disables IRQ interrupts by setting the I-bit in the CPSR.
|
|
Can only be executed in Privileged modes.
|
|
*/
|
|
__attribute__((always_inline)) __STATIC_INLINE void __disable_irq(void) { __ASM volatile("cpsid i" : : : "memory"); }
|
|
|
|
/**
|
|
\brief Get Control Register
|
|
\details Returns the content of the Control Register.
|
|
\return Control Register value
|
|
*/
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __get_CONTROL(void) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("MRS %0, control" : "=r"(result));
|
|
return (result);
|
|
}
|
|
|
|
/**
|
|
\brief Set Control Register
|
|
\details Writes the given value to the Control Register.
|
|
\param [in] control Control Register value to set
|
|
*/
|
|
__attribute__((always_inline)) __STATIC_INLINE void __set_CONTROL(uint32_t control) {
|
|
__ASM volatile("MSR control, %0" : : "r"(control) : "memory");
|
|
}
|
|
|
|
/**
|
|
\brief Get IPSR Register
|
|
\details Returns the content of the IPSR Register.
|
|
\return IPSR Register value
|
|
*/
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __get_IPSR(void) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("MRS %0, ipsr" : "=r"(result));
|
|
return (result);
|
|
}
|
|
|
|
/**
|
|
\brief Get APSR Register
|
|
\details Returns the content of the APSR Register.
|
|
\return APSR Register value
|
|
*/
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __get_APSR(void) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("MRS %0, apsr" : "=r"(result));
|
|
return (result);
|
|
}
|
|
|
|
/**
|
|
\brief Get xPSR Register
|
|
\details Returns the content of the xPSR Register.
|
|
|
|
\return xPSR Register value
|
|
*/
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __get_xPSR(void) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("MRS %0, xpsr" : "=r"(result));
|
|
return (result);
|
|
}
|
|
|
|
/**
|
|
\brief Get Process Stack Pointer
|
|
\details Returns the current value of the Process Stack Pointer (PSP).
|
|
\return PSP Register value
|
|
*/
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __get_PSP(void) {
|
|
register uint32_t result;
|
|
|
|
__ASM volatile("MRS %0, psp\n" : "=r"(result));
|
|
return (result);
|
|
}
|
|
|
|
/**
|
|
\brief Set Process Stack Pointer
|
|
\details Assigns the given value to the Process Stack Pointer (PSP).
|
|
\param [in] topOfProcStack Process Stack Pointer value to set
|
|
*/
|
|
__attribute__((always_inline)) __STATIC_INLINE void __set_PSP(uint32_t topOfProcStack) {
|
|
__ASM volatile("MSR psp, %0\n" : : "r"(topOfProcStack) : "sp");
|
|
}
|
|
|
|
/**
|
|
\brief Get Main Stack Pointer
|
|
\details Returns the current value of the Main Stack Pointer (MSP).
|
|
\return MSP Register value
|
|
*/
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __get_MSP(void) {
|
|
register uint32_t result;
|
|
|
|
__ASM volatile("MRS %0, msp\n" : "=r"(result));
|
|
return (result);
|
|
}
|
|
|
|
/**
|
|
\brief Set Main Stack Pointer
|
|
\details Assigns the given value to the Main Stack Pointer (MSP).
|
|
|
|
\param [in] topOfMainStack Main Stack Pointer value to set
|
|
*/
|
|
__attribute__((always_inline)) __STATIC_INLINE void __set_MSP(uint32_t topOfMainStack) {
|
|
__ASM volatile("MSR msp, %0\n" : : "r"(topOfMainStack) : "sp");
|
|
}
|
|
|
|
/**
|
|
\brief Get Priority Mask
|
|
\details Returns the current state of the priority mask bit from the Priority Mask Register.
|
|
\return Priority Mask value
|
|
*/
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __get_PRIMASK(void) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("MRS %0, primask" : "=r"(result));
|
|
return (result);
|
|
}
|
|
|
|
/**
|
|
\brief Set Priority Mask
|
|
\details Assigns the given value to the Priority Mask Register.
|
|
\param [in] priMask Priority Mask
|
|
*/
|
|
__attribute__((always_inline)) __STATIC_INLINE void __set_PRIMASK(uint32_t priMask) {
|
|
__ASM volatile("MSR primask, %0" : : "r"(priMask) : "memory");
|
|
}
|
|
|
|
#if (__CORTEX_M >= 0x03U)
|
|
|
|
/**
|
|
\brief Enable FIQ
|
|
\details Enables FIQ interrupts by clearing the F-bit in the CPSR.
|
|
Can only be executed in Privileged modes.
|
|
*/
|
|
__attribute__((always_inline)) __STATIC_INLINE void __enable_fault_irq(void) {
|
|
__ASM volatile("cpsie f" : : : "memory");
|
|
}
|
|
|
|
/**
|
|
\brief Disable FIQ
|
|
\details Disables FIQ interrupts by setting the F-bit in the CPSR.
|
|
Can only be executed in Privileged modes.
|
|
*/
|
|
__attribute__((always_inline)) __STATIC_INLINE void __disable_fault_irq(void) {
|
|
__ASM volatile("cpsid f" : : : "memory");
|
|
}
|
|
|
|
/**
|
|
\brief Get Base Priority
|
|
\details Returns the current value of the Base Priority register.
|
|
\return Base Priority register value
|
|
*/
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __get_BASEPRI(void) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("MRS %0, basepri" : "=r"(result));
|
|
return (result);
|
|
}
|
|
|
|
/**
|
|
\brief Set Base Priority
|
|
\details Assigns the given value to the Base Priority register.
|
|
\param [in] basePri Base Priority value to set
|
|
*/
|
|
__attribute__((always_inline)) __STATIC_INLINE void __set_BASEPRI(uint32_t value) {
|
|
__ASM volatile("MSR basepri, %0" : : "r"(value) : "memory");
|
|
}
|
|
|
|
/**
|
|
\brief Set Base Priority with condition
|
|
\details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled,
|
|
or the new value increases the BASEPRI priority level.
|
|
\param [in] basePri Base Priority value to set
|
|
*/
|
|
__attribute__((always_inline)) __STATIC_INLINE void __set_BASEPRI_MAX(uint32_t value) {
|
|
__ASM volatile("MSR basepri_max, %0" : : "r"(value) : "memory");
|
|
}
|
|
|
|
/**
|
|
\brief Get Fault Mask
|
|
\details Returns the current value of the Fault Mask register.
|
|
\return Fault Mask register value
|
|
*/
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __get_FAULTMASK(void) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("MRS %0, faultmask" : "=r"(result));
|
|
return (result);
|
|
}
|
|
|
|
/**
|
|
\brief Set Fault Mask
|
|
\details Assigns the given value to the Fault Mask register.
|
|
\param [in] faultMask Fault Mask value to set
|
|
*/
|
|
__attribute__((always_inline)) __STATIC_INLINE void __set_FAULTMASK(uint32_t faultMask) {
|
|
__ASM volatile("MSR faultmask, %0" : : "r"(faultMask) : "memory");
|
|
}
|
|
|
|
#endif /* (__CORTEX_M >= 0x03U) */
|
|
|
|
#if (__CORTEX_M == 0x04U) || (__CORTEX_M == 0x07U)
|
|
|
|
/**
|
|
\brief Get FPSCR
|
|
\details Returns the current value of the Floating Point Status/Control register.
|
|
\return Floating Point Status/Control register value
|
|
*/
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __get_FPSCR(void) {
|
|
#if (__FPU_PRESENT == 1U) && (__FPU_USED == 1U)
|
|
uint32_t result;
|
|
|
|
/* Empty asm statement works as a scheduling barrier */
|
|
__ASM volatile("");
|
|
__ASM volatile("VMRS %0, fpscr" : "=r"(result));
|
|
__ASM volatile("");
|
|
return (result);
|
|
#else
|
|
return (0);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
\brief Set FPSCR
|
|
\details Assigns the given value to the Floating Point Status/Control register.
|
|
\param [in] fpscr Floating Point Status/Control value to set
|
|
*/
|
|
__attribute__((always_inline)) __STATIC_INLINE void __set_FPSCR(uint32_t fpscr) {
|
|
#if (__FPU_PRESENT == 1U) && (__FPU_USED == 1U)
|
|
/* Empty asm statement works as a scheduling barrier */
|
|
__ASM volatile("");
|
|
__ASM volatile("VMSR fpscr, %0" : : "r"(fpscr) : "vfpcc");
|
|
__ASM volatile("");
|
|
#endif
|
|
}
|
|
|
|
#endif /* (__CORTEX_M == 0x04U) || (__CORTEX_M == 0x07U) */
|
|
|
|
/*@} end of CMSIS_Core_RegAccFunctions */
|
|
|
|
/* ########################## Core Instruction Access ######################### */
|
|
/** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
|
|
Access to dedicated instructions
|
|
@{
|
|
*/
|
|
|
|
/* Define macros for porting to both thumb1 and thumb2.
|
|
* For thumb1, use low register (r0-r7), specified by constraint "l"
|
|
* Otherwise, use general registers, specified by constraint "r" */
|
|
#if defined(__thumb__) && !defined(__thumb2__)
|
|
#define __CMSIS_GCC_OUT_REG(r) "=l"(r)
|
|
#define __CMSIS_GCC_USE_REG(r) "l"(r)
|
|
#else
|
|
#define __CMSIS_GCC_OUT_REG(r) "=r"(r)
|
|
#define __CMSIS_GCC_USE_REG(r) "r"(r)
|
|
#endif
|
|
|
|
/**
|
|
\brief No Operation
|
|
\details No Operation does nothing. This instruction can be used for code alignment purposes.
|
|
*/
|
|
__attribute__((always_inline)) __STATIC_INLINE void __NOP(void) { __ASM volatile("nop"); }
|
|
|
|
/**
|
|
\brief Wait For Interrupt
|
|
\details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs.
|
|
*/
|
|
__attribute__((always_inline)) __STATIC_INLINE void __WFI(void) { __ASM volatile("wfi"); }
|
|
|
|
/**
|
|
\brief Wait For Event
|
|
\details Wait For Event is a hint instruction that permits the processor to enter
|
|
a low-power state until one of a number of events occurs.
|
|
*/
|
|
__attribute__((always_inline)) __STATIC_INLINE void __WFE(void) { __ASM volatile("wfe"); }
|
|
|
|
/**
|
|
\brief Send Event
|
|
\details Send Event is a hint instruction. It causes an event to be signaled to the CPU.
|
|
*/
|
|
__attribute__((always_inline)) __STATIC_INLINE void __SEV(void) { __ASM volatile("sev"); }
|
|
|
|
/**
|
|
\brief Instruction Synchronization Barrier
|
|
\details Instruction Synchronization Barrier flushes the pipeline in the processor,
|
|
so that all instructions following the ISB are fetched from cache or memory,
|
|
after the instruction has been completed.
|
|
*/
|
|
__attribute__((always_inline)) __STATIC_INLINE void __ISB(void) { __ASM volatile("isb 0xF" ::: "memory"); }
|
|
|
|
/**
|
|
\brief Data Synchronization Barrier
|
|
\details Acts as a special kind of Data Memory Barrier.
|
|
It completes when all explicit memory accesses before this instruction complete.
|
|
*/
|
|
__attribute__((always_inline)) __STATIC_INLINE void __DSB(void) { __ASM volatile("dsb 0xF" ::: "memory"); }
|
|
|
|
/**
|
|
\brief Data Memory Barrier
|
|
\details Ensures the apparent order of the explicit memory operations before
|
|
and after the instruction, without ensuring their completion.
|
|
*/
|
|
__attribute__((always_inline)) __STATIC_INLINE void __DMB(void) { __ASM volatile("dmb 0xF" ::: "memory"); }
|
|
|
|
/**
|
|
\brief Reverse byte order (32 bit)
|
|
\details Reverses the byte order in integer value.
|
|
\param [in] value Value to reverse
|
|
\return Reversed value
|
|
*/
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __REV(uint32_t value) {
|
|
#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5)
|
|
return __builtin_bswap32(value);
|
|
#else
|
|
uint32_t result;
|
|
|
|
__ASM volatile("rev %0, %1" : __CMSIS_GCC_OUT_REG(result) : __CMSIS_GCC_USE_REG(value));
|
|
return (result);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
\brief Reverse byte order (16 bit)
|
|
\details Reverses the byte order in two unsigned short values.
|
|
\param [in] value Value to reverse
|
|
\return Reversed value
|
|
*/
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __REV16(uint32_t value) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("rev16 %0, %1" : __CMSIS_GCC_OUT_REG(result) : __CMSIS_GCC_USE_REG(value));
|
|
return (result);
|
|
}
|
|
|
|
/**
|
|
\brief Reverse byte order in signed short value
|
|
\details Reverses the byte order in a signed short value with sign extension to integer.
|
|
\param [in] value Value to reverse
|
|
\return Reversed value
|
|
*/
|
|
__attribute__((always_inline)) __STATIC_INLINE int32_t __REVSH(int32_t value) {
|
|
#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
|
|
return (short)__builtin_bswap16(value);
|
|
#else
|
|
int32_t result;
|
|
|
|
__ASM volatile("revsh %0, %1" : __CMSIS_GCC_OUT_REG(result) : __CMSIS_GCC_USE_REG(value));
|
|
return (result);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
\brief Rotate Right in unsigned value (32 bit)
|
|
\details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of
|
|
bits. \param [in] value Value to rotate \param [in] value Number of Bits to rotate \return Rotated value
|
|
*/
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __ROR(uint32_t op1, uint32_t op2) {
|
|
return (op1 >> op2) | (op1 << (32U - op2));
|
|
}
|
|
|
|
/**
|
|
\brief Breakpoint
|
|
\details Causes the processor to enter Debug state.
|
|
Debug tools can use this to investigate system state when the instruction at a particular address is reached.
|
|
\param [in] value is ignored by the processor.
|
|
If required, a debugger can use it to store additional information about the breakpoint.
|
|
*/
|
|
#define __BKPT(value) __ASM volatile("bkpt " #value)
|
|
|
|
/**
|
|
\brief Reverse bit order of value
|
|
\details Reverses the bit order of the given value.
|
|
\param [in] value Value to reverse
|
|
\return Reversed value
|
|
*/
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __RBIT(uint32_t value) {
|
|
uint32_t result;
|
|
|
|
#if (__CORTEX_M >= 0x03U) || (defined(__CORTEX_SC) && __CORTEX_SC >= 300U)
|
|
__ASM volatile("rbit %0, %1" : "=r"(result) : "r"(value));
|
|
#else
|
|
int32_t s = 4 /*sizeof(v)*/ * 8 - 1; /* extra shift needed at end */
|
|
|
|
result = value; /* r will be reversed bits of v; first get LSB of v */
|
|
for (value >>= 1U; value; value >>= 1U) {
|
|
result <<= 1U;
|
|
result |= value & 1U;
|
|
s--;
|
|
}
|
|
result <<= s; /* shift when v's highest bits are zero */
|
|
#endif
|
|
return (result);
|
|
}
|
|
|
|
/**
|
|
\brief Count leading zeros
|
|
\details Counts the number of leading zeros of a data value.
|
|
\param [in] value Value to count the leading zeros
|
|
\return number of leading zeros in value
|
|
*/
|
|
#define __CLZ __builtin_clz
|
|
|
|
#if (__CORTEX_M >= 0x03U) || (defined(__CORTEX_SC) && __CORTEX_SC >= 300U)
|
|
|
|
/**
|
|
\brief LDR Exclusive (8 bit)
|
|
\details Executes a exclusive LDR instruction for 8 bit value.
|
|
\param [in] ptr Pointer to data
|
|
\return value of type uint8_t at (*ptr)
|
|
*/
|
|
__attribute__((always_inline)) __STATIC_INLINE uint8_t __LDREXB(volatile uint8_t *addr) {
|
|
uint32_t result;
|
|
|
|
#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
|
|
__ASM volatile("ldrexb %0, %1" : "=r"(result) : "Q"(*addr));
|
|
#else
|
|
/* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
|
|
accepted by assembler. So has to use following less efficient pattern.
|
|
*/
|
|
__ASM volatile("ldrexb %0, [%1]" : "=r"(result) : "r"(addr) : "memory");
|
|
#endif
|
|
return ((uint8_t)result); /* Add explicit type cast here */
|
|
}
|
|
|
|
/**
|
|
\brief LDR Exclusive (16 bit)
|
|
\details Executes a exclusive LDR instruction for 16 bit values.
|
|
\param [in] ptr Pointer to data
|
|
\return value of type uint16_t at (*ptr)
|
|
*/
|
|
__attribute__((always_inline)) __STATIC_INLINE uint16_t __LDREXH(volatile uint16_t *addr) {
|
|
uint32_t result;
|
|
|
|
#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
|
|
__ASM volatile("ldrexh %0, %1" : "=r"(result) : "Q"(*addr));
|
|
#else
|
|
/* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
|
|
accepted by assembler. So has to use following less efficient pattern.
|
|
*/
|
|
__ASM volatile("ldrexh %0, [%1]" : "=r"(result) : "r"(addr) : "memory");
|
|
#endif
|
|
return ((uint16_t)result); /* Add explicit type cast here */
|
|
}
|
|
|
|
/**
|
|
\brief LDR Exclusive (32 bit)
|
|
\details Executes a exclusive LDR instruction for 32 bit values.
|
|
\param [in] ptr Pointer to data
|
|
\return value of type uint32_t at (*ptr)
|
|
*/
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __LDREXW(volatile uint32_t *addr) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("ldrex %0, %1" : "=r"(result) : "Q"(*addr));
|
|
return (result);
|
|
}
|
|
|
|
/**
|
|
\brief STR Exclusive (8 bit)
|
|
\details Executes a exclusive STR instruction for 8 bit values.
|
|
\param [in] value Value to store
|
|
\param [in] ptr Pointer to location
|
|
\return 0 Function succeeded
|
|
\return 1 Function failed
|
|
*/
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __STREXB(uint8_t value, volatile uint8_t *addr) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("strexb %0, %2, %1" : "=&r"(result), "=Q"(*addr) : "r"((uint32_t)value));
|
|
return (result);
|
|
}
|
|
|
|
/**
|
|
\brief STR Exclusive (16 bit)
|
|
\details Executes a exclusive STR instruction for 16 bit values.
|
|
\param [in] value Value to store
|
|
\param [in] ptr Pointer to location
|
|
\return 0 Function succeeded
|
|
\return 1 Function failed
|
|
*/
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __STREXH(uint16_t value, volatile uint16_t *addr) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("strexh %0, %2, %1" : "=&r"(result), "=Q"(*addr) : "r"((uint32_t)value));
|
|
return (result);
|
|
}
|
|
|
|
/**
|
|
\brief STR Exclusive (32 bit)
|
|
\details Executes a exclusive STR instruction for 32 bit values.
|
|
\param [in] value Value to store
|
|
\param [in] ptr Pointer to location
|
|
\return 0 Function succeeded
|
|
\return 1 Function failed
|
|
*/
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __STREXW(uint32_t value, volatile uint32_t *addr) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("strex %0, %2, %1" : "=&r"(result), "=Q"(*addr) : "r"(value));
|
|
return (result);
|
|
}
|
|
|
|
/**
|
|
\brief Remove the exclusive lock
|
|
\details Removes the exclusive lock which is created by LDREX.
|
|
*/
|
|
__attribute__((always_inline)) __STATIC_INLINE void __CLREX(void) { __ASM volatile("clrex" ::: "memory"); }
|
|
|
|
/**
|
|
\brief Signed Saturate
|
|
\details Saturates a signed value.
|
|
\param [in] value Value to be saturated
|
|
\param [in] sat Bit position to saturate to (1..32)
|
|
\return Saturated value
|
|
*/
|
|
#define __SSAT(ARG1, ARG2) \
|
|
({ \
|
|
uint32_t __RES, __ARG1 = (ARG1); \
|
|
__ASM("ssat %0, %1, %2" : "=r"(__RES) : "I"(ARG2), "r"(__ARG1)); \
|
|
__RES; \
|
|
})
|
|
|
|
/**
|
|
\brief Unsigned Saturate
|
|
\details Saturates an unsigned value.
|
|
\param [in] value Value to be saturated
|
|
\param [in] sat Bit position to saturate to (0..31)
|
|
\return Saturated value
|
|
*/
|
|
#define __USAT(ARG1, ARG2) \
|
|
({ \
|
|
uint32_t __RES, __ARG1 = (ARG1); \
|
|
__ASM("usat %0, %1, %2" : "=r"(__RES) : "I"(ARG2), "r"(__ARG1)); \
|
|
__RES; \
|
|
})
|
|
|
|
/**
|
|
\brief Rotate Right with Extend (32 bit)
|
|
\details Moves each bit of a bitstring right by one bit.
|
|
The carry input is shifted in at the left end of the bitstring.
|
|
\param [in] value Value to rotate
|
|
\return Rotated value
|
|
*/
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __RRX(uint32_t value) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("rrx %0, %1" : __CMSIS_GCC_OUT_REG(result) : __CMSIS_GCC_USE_REG(value));
|
|
return (result);
|
|
}
|
|
|
|
/**
|
|
\brief LDRT Unprivileged (8 bit)
|
|
\details Executes a Unprivileged LDRT instruction for 8 bit value.
|
|
\param [in] ptr Pointer to data
|
|
\return value of type uint8_t at (*ptr)
|
|
*/
|
|
__attribute__((always_inline)) __STATIC_INLINE uint8_t __LDRBT(volatile uint8_t *addr) {
|
|
uint32_t result;
|
|
|
|
#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
|
|
__ASM volatile("ldrbt %0, %1" : "=r"(result) : "Q"(*addr));
|
|
#else
|
|
/* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
|
|
accepted by assembler. So has to use following less efficient pattern.
|
|
*/
|
|
__ASM volatile("ldrbt %0, [%1]" : "=r"(result) : "r"(addr) : "memory");
|
|
#endif
|
|
return ((uint8_t)result); /* Add explicit type cast here */
|
|
}
|
|
|
|
/**
|
|
\brief LDRT Unprivileged (16 bit)
|
|
\details Executes a Unprivileged LDRT instruction for 16 bit values.
|
|
\param [in] ptr Pointer to data
|
|
\return value of type uint16_t at (*ptr)
|
|
*/
|
|
__attribute__((always_inline)) __STATIC_INLINE uint16_t __LDRHT(volatile uint16_t *addr) {
|
|
uint32_t result;
|
|
|
|
#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
|
|
__ASM volatile("ldrht %0, %1" : "=r"(result) : "Q"(*addr));
|
|
#else
|
|
/* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
|
|
accepted by assembler. So has to use following less efficient pattern.
|
|
*/
|
|
__ASM volatile("ldrht %0, [%1]" : "=r"(result) : "r"(addr) : "memory");
|
|
#endif
|
|
return ((uint16_t)result); /* Add explicit type cast here */
|
|
}
|
|
|
|
/**
|
|
\brief LDRT Unprivileged (32 bit)
|
|
\details Executes a Unprivileged LDRT instruction for 32 bit values.
|
|
\param [in] ptr Pointer to data
|
|
\return value of type uint32_t at (*ptr)
|
|
*/
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __LDRT(volatile uint32_t *addr) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("ldrt %0, %1" : "=r"(result) : "Q"(*addr));
|
|
return (result);
|
|
}
|
|
|
|
/**
|
|
\brief STRT Unprivileged (8 bit)
|
|
\details Executes a Unprivileged STRT instruction for 8 bit values.
|
|
\param [in] value Value to store
|
|
\param [in] ptr Pointer to location
|
|
*/
|
|
__attribute__((always_inline)) __STATIC_INLINE void __STRBT(uint8_t value, volatile uint8_t *addr) {
|
|
__ASM volatile("strbt %1, %0" : "=Q"(*addr) : "r"((uint32_t)value));
|
|
}
|
|
|
|
/**
|
|
\brief STRT Unprivileged (16 bit)
|
|
\details Executes a Unprivileged STRT instruction for 16 bit values.
|
|
\param [in] value Value to store
|
|
\param [in] ptr Pointer to location
|
|
*/
|
|
__attribute__((always_inline)) __STATIC_INLINE void __STRHT(uint16_t value, volatile uint16_t *addr) {
|
|
__ASM volatile("strht %1, %0" : "=Q"(*addr) : "r"((uint32_t)value));
|
|
}
|
|
|
|
/**
|
|
\brief STRT Unprivileged (32 bit)
|
|
\details Executes a Unprivileged STRT instruction for 32 bit values.
|
|
\param [in] value Value to store
|
|
\param [in] ptr Pointer to location
|
|
*/
|
|
__attribute__((always_inline)) __STATIC_INLINE void __STRT(uint32_t value, volatile uint32_t *addr) {
|
|
__ASM volatile("strt %1, %0" : "=Q"(*addr) : "r"(value));
|
|
}
|
|
|
|
#endif /* (__CORTEX_M >= 0x03U) || (__CORTEX_SC >= 300U) */
|
|
|
|
/*@}*/ /* end of group CMSIS_Core_InstructionInterface */
|
|
|
|
/* ################### Compiler specific Intrinsics ########################### */
|
|
/** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics
|
|
Access to dedicated SIMD instructions
|
|
@{
|
|
*/
|
|
|
|
#if (__CORTEX_M >= 0x04U) /* only for Cortex-M4 and above */
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __SADD8(uint32_t op1, uint32_t op2) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("sadd8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __QADD8(uint32_t op1, uint32_t op2) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("qadd8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __SHADD8(uint32_t op1, uint32_t op2) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("shadd8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __UADD8(uint32_t op1, uint32_t op2) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("uadd8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __UQADD8(uint32_t op1, uint32_t op2) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("uqadd8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __UHADD8(uint32_t op1, uint32_t op2) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("uhadd8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __SSUB8(uint32_t op1, uint32_t op2) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("ssub8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __QSUB8(uint32_t op1, uint32_t op2) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("qsub8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __SHSUB8(uint32_t op1, uint32_t op2) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("shsub8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __USUB8(uint32_t op1, uint32_t op2) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("usub8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __UQSUB8(uint32_t op1, uint32_t op2) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("uqsub8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __UHSUB8(uint32_t op1, uint32_t op2) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("uhsub8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __SADD16(uint32_t op1, uint32_t op2) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("sadd16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __QADD16(uint32_t op1, uint32_t op2) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("qadd16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __SHADD16(uint32_t op1, uint32_t op2) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("shadd16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __UADD16(uint32_t op1, uint32_t op2) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("uadd16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __UQADD16(uint32_t op1, uint32_t op2) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("uqadd16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __UHADD16(uint32_t op1, uint32_t op2) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("uhadd16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __SSUB16(uint32_t op1, uint32_t op2) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("ssub16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __QSUB16(uint32_t op1, uint32_t op2) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("qsub16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __SHSUB16(uint32_t op1, uint32_t op2) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("shsub16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __USUB16(uint32_t op1, uint32_t op2) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("usub16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __UQSUB16(uint32_t op1, uint32_t op2) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("uqsub16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __UHSUB16(uint32_t op1, uint32_t op2) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("uhsub16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __SASX(uint32_t op1, uint32_t op2) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("sasx %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __QASX(uint32_t op1, uint32_t op2) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("qasx %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __SHASX(uint32_t op1, uint32_t op2) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("shasx %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __UASX(uint32_t op1, uint32_t op2) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("uasx %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __UQASX(uint32_t op1, uint32_t op2) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("uqasx %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __UHASX(uint32_t op1, uint32_t op2) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("uhasx %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __SSAX(uint32_t op1, uint32_t op2) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("ssax %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __QSAX(uint32_t op1, uint32_t op2) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("qsax %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __SHSAX(uint32_t op1, uint32_t op2) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("shsax %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __USAX(uint32_t op1, uint32_t op2) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("usax %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __UQSAX(uint32_t op1, uint32_t op2) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("uqsax %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __UHSAX(uint32_t op1, uint32_t op2) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("uhsax %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __USAD8(uint32_t op1, uint32_t op2) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("usad8 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __USADA8(uint32_t op1, uint32_t op2, uint32_t op3) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("usada8 %0, %1, %2, %3" : "=r"(result) : "r"(op1), "r"(op2), "r"(op3));
|
|
return (result);
|
|
}
|
|
|
|
#define __SSAT16(ARG1, ARG2) \
|
|
({ \
|
|
int32_t __RES, __ARG1 = (ARG1); \
|
|
__ASM("ssat16 %0, %1, %2" : "=r"(__RES) : "I"(ARG2), "r"(__ARG1)); \
|
|
__RES; \
|
|
})
|
|
|
|
#define __USAT16(ARG1, ARG2) \
|
|
({ \
|
|
uint32_t __RES, __ARG1 = (ARG1); \
|
|
__ASM("usat16 %0, %1, %2" : "=r"(__RES) : "I"(ARG2), "r"(__ARG1)); \
|
|
__RES; \
|
|
})
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __UXTB16(uint32_t op1) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("uxtb16 %0, %1" : "=r"(result) : "r"(op1));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __UXTAB16(uint32_t op1, uint32_t op2) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("uxtab16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __SXTB16(uint32_t op1) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("sxtb16 %0, %1" : "=r"(result) : "r"(op1));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __SXTAB16(uint32_t op1, uint32_t op2) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("sxtab16 %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __SMUAD(uint32_t op1, uint32_t op2) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("smuad %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __SMUADX(uint32_t op1, uint32_t op2) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("smuadx %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __SMLAD(uint32_t op1, uint32_t op2, uint32_t op3) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("smlad %0, %1, %2, %3" : "=r"(result) : "r"(op1), "r"(op2), "r"(op3));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __SMLADX(uint32_t op1, uint32_t op2, uint32_t op3) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("smladx %0, %1, %2, %3" : "=r"(result) : "r"(op1), "r"(op2), "r"(op3));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint64_t __SMLALD(uint32_t op1, uint32_t op2, uint64_t acc) {
|
|
union llreg_u {
|
|
uint32_t w32[2];
|
|
uint64_t w64;
|
|
} llr;
|
|
llr.w64 = acc;
|
|
|
|
#ifndef __ARMEB__ /* Little endian */
|
|
__ASM volatile("smlald %0, %1, %2, %3"
|
|
: "=r"(llr.w32[0]), "=r"(llr.w32[1])
|
|
: "r"(op1), "r"(op2), "0"(llr.w32[0]), "1"(llr.w32[1]));
|
|
#else /* Big endian */
|
|
__ASM volatile("smlald %0, %1, %2, %3"
|
|
: "=r"(llr.w32[1]), "=r"(llr.w32[0])
|
|
: "r"(op1), "r"(op2), "0"(llr.w32[1]), "1"(llr.w32[0]));
|
|
#endif
|
|
|
|
return (llr.w64);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint64_t __SMLALDX(uint32_t op1, uint32_t op2, uint64_t acc) {
|
|
union llreg_u {
|
|
uint32_t w32[2];
|
|
uint64_t w64;
|
|
} llr;
|
|
llr.w64 = acc;
|
|
|
|
#ifndef __ARMEB__ /* Little endian */
|
|
__ASM volatile("smlaldx %0, %1, %2, %3"
|
|
: "=r"(llr.w32[0]), "=r"(llr.w32[1])
|
|
: "r"(op1), "r"(op2), "0"(llr.w32[0]), "1"(llr.w32[1]));
|
|
#else /* Big endian */
|
|
__ASM volatile("smlaldx %0, %1, %2, %3"
|
|
: "=r"(llr.w32[1]), "=r"(llr.w32[0])
|
|
: "r"(op1), "r"(op2), "0"(llr.w32[1]), "1"(llr.w32[0]));
|
|
#endif
|
|
|
|
return (llr.w64);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __SMUSD(uint32_t op1, uint32_t op2) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("smusd %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __SMUSDX(uint32_t op1, uint32_t op2) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("smusdx %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __SMLSD(uint32_t op1, uint32_t op2, uint32_t op3) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("smlsd %0, %1, %2, %3" : "=r"(result) : "r"(op1), "r"(op2), "r"(op3));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __SMLSDX(uint32_t op1, uint32_t op2, uint32_t op3) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("smlsdx %0, %1, %2, %3" : "=r"(result) : "r"(op1), "r"(op2), "r"(op3));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint64_t __SMLSLD(uint32_t op1, uint32_t op2, uint64_t acc) {
|
|
union llreg_u {
|
|
uint32_t w32[2];
|
|
uint64_t w64;
|
|
} llr;
|
|
llr.w64 = acc;
|
|
|
|
#ifndef __ARMEB__ /* Little endian */
|
|
__ASM volatile("smlsld %0, %1, %2, %3"
|
|
: "=r"(llr.w32[0]), "=r"(llr.w32[1])
|
|
: "r"(op1), "r"(op2), "0"(llr.w32[0]), "1"(llr.w32[1]));
|
|
#else /* Big endian */
|
|
__ASM volatile("smlsld %0, %1, %2, %3"
|
|
: "=r"(llr.w32[1]), "=r"(llr.w32[0])
|
|
: "r"(op1), "r"(op2), "0"(llr.w32[1]), "1"(llr.w32[0]));
|
|
#endif
|
|
|
|
return (llr.w64);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint64_t __SMLSLDX(uint32_t op1, uint32_t op2, uint64_t acc) {
|
|
union llreg_u {
|
|
uint32_t w32[2];
|
|
uint64_t w64;
|
|
} llr;
|
|
llr.w64 = acc;
|
|
|
|
#ifndef __ARMEB__ /* Little endian */
|
|
__ASM volatile("smlsldx %0, %1, %2, %3"
|
|
: "=r"(llr.w32[0]), "=r"(llr.w32[1])
|
|
: "r"(op1), "r"(op2), "0"(llr.w32[0]), "1"(llr.w32[1]));
|
|
#else /* Big endian */
|
|
__ASM volatile("smlsldx %0, %1, %2, %3"
|
|
: "=r"(llr.w32[1]), "=r"(llr.w32[0])
|
|
: "r"(op1), "r"(op2), "0"(llr.w32[1]), "1"(llr.w32[0]));
|
|
#endif
|
|
|
|
return (llr.w64);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __SEL(uint32_t op1, uint32_t op2) {
|
|
uint32_t result;
|
|
|
|
__ASM volatile("sel %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE int32_t __QADD(int32_t op1, int32_t op2) {
|
|
int32_t result;
|
|
|
|
__ASM volatile("qadd %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
|
|
return (result);
|
|
}
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE int32_t __QSUB(int32_t op1, int32_t op2) {
|
|
int32_t result;
|
|
|
|
__ASM volatile("qsub %0, %1, %2" : "=r"(result) : "r"(op1), "r"(op2));
|
|
return (result);
|
|
}
|
|
|
|
#define __PKHBT(ARG1, ARG2, ARG3) \
|
|
({ \
|
|
uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
|
|
__ASM("pkhbt %0, %1, %2, lsl %3" : "=r"(__RES) : "r"(__ARG1), "r"(__ARG2), "I"(ARG3)); \
|
|
__RES; \
|
|
})
|
|
|
|
#define __PKHTB(ARG1, ARG2, ARG3) \
|
|
({ \
|
|
uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
|
|
if (ARG3 == 0) \
|
|
__ASM("pkhtb %0, %1, %2" : "=r"(__RES) : "r"(__ARG1), "r"(__ARG2)); \
|
|
else \
|
|
__ASM("pkhtb %0, %1, %2, asr %3" : "=r"(__RES) : "r"(__ARG1), "r"(__ARG2), "I"(ARG3)); \
|
|
__RES; \
|
|
})
|
|
|
|
__attribute__((always_inline)) __STATIC_INLINE uint32_t __SMMLA(int32_t op1, int32_t op2, int32_t op3) {
|
|
int32_t result;
|
|
|
|
__ASM volatile("smmla %0, %1, %2, %3" : "=r"(result) : "r"(op1), "r"(op2), "r"(op3));
|
|
return (result);
|
|
}
|
|
|
|
#endif /* (__CORTEX_M >= 0x04) */
|
|
/*@} end of group CMSIS_SIMD_intrinsics */
|
|
|
|
#if defined(__GNUC__)
|
|
#pragma GCC diagnostic pop
|
|
#endif
|
|
|
|
#endif /* __CMSIS_GCC_H */
|