G4-DESCSS/README.md
2022-05-14 22:29:22 +08:00

289 lines
18 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<style>
td {min-width: 80px;}
.tg {border-collapse:collapse;border-spacing:0;}
.tg td{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;
overflow:hidden;padding:10px 5px;word-break:normal;}
.tg th{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;
font-weight:normal;overflow:hidden;padding:10px 5px;word-break:normal;}
.tg .tg-wa1i{font-weight:bold;text-align:center;vertical-align:middle}
.tg .tg-uzvj{border-color:inherit;font-weight:bold;text-align:center;vertical-align:middle}
.tg .tg-nrix{text-align:center;vertical-align:middle}
</style>
# DESCSS
Dose Estimation by Simulation of China Space Station
中国空间站模拟剂量评估
## 空间辐射环境
### 轨道
1. 空间站轨道根数(`TLE`, `2022.05.11`[^1]
```
1 48274U 21035A 22131.00000000 .00018566 00000-0 21317-3 0 9998
2 48274 41.4696 84.9802 0011517 308.1456 44.4159 15.61130380 58963
```
<div align=center>
| 偏心率 | 倾角<br/>deg | 升交点赤经<br/>deg | 近地点辐角<br/>deg | 平近点角<br/>deg |
|:--------:|:------------:|:-----------------:|:-----------------:|:---------------:|
| 0.001152 | 41.4696 | 84.9802 | 308.1456 | 44.4159 |
</div>
2. 轨道参数
平近点角$M$与偏近点角$E$满足:
$$
M = E - e\cdot\sin{E}
$$
真近点角$T$与偏近点角$E$满足:
$$
\tan{\frac{T}{2}}=\sqrt{\frac{1+e}{1-e}}\tan{\frac{E}{2}}
$$
由此有:
<div align=center>
| 近地点<br/>km | 远地点<br/>km | 倾角<br/>deg | 升交点赤经<br/>deg | 近地点辐角<br/>deg | 偏近点角<br/>deg | 真近点角<br/>deg |
|:----------:|:----------:|:------------:|:-----------------:|:-----------------:|:---------------:|:---------------:|
| 379.2 | 393.8 | 41.4696 | 84.9802 | 308.1456 | 44.4167 | 44.4629 |
</div>
3. 生成轨道
使用`SPENVIS`的`Coordinate generators`生成预计轨道总计30天保存为`assets/orbit.csv`文件。
<div align=center><img src="docs/orbit.png" style="max-width: 50%;"></div>
### 辐射环境
#### 银河宇宙射线[^2]
银河宇宙射线 (`GCR``Galactic cosmic rays`) 是从系外进入太阳系的高能带电粒子,其通量与太阳活动负相关,主要由质子、电子和完全电离的原子核组成,核成分约占$98\%$,分别为`H`$\approx87\%$)、`He`$\approx12\%$)和少量较重的原子核($\approx1\%$)。
`GCR`一般各向同性,通量约为$1\sim10\ \mathrm{cm^{-2}s^{1}}$,以高能粒子为主(可达到$10^{11}\ \mathrm{GeV}$),贡献绝大部分有效剂量。一般在太阳活动极小时最大(还取决太阳磁性)。
`GCR`中还包含有所谓异常成分(`anomalous component`),星际间的中性粒子进入太阳系后,太阳辐射使其失去电子,离子太阳风作用和碰撞加速,其穿透地磁场的能力比其他成分更大,又可分为部分电离(`singly-ionized anomalous component`)和完全电离(`fully-ionized anomalous component`)。
考虑异常部分,我们使用`SPENVIS`+`CREME86`模型进行模拟获取1号`H`至28号`Ni`)元素在$90\%$最坏情况下的`GCR`通量(即实际情况大约只有$10\%$的可能通量大于这一估计值,`M=3`)。
<div align=center><img src="docs/spectra-M3.png"></div>
#### 太阳辐射[^3]
太阳辐射的主要来源是日冕抛射和太阳耀斑具有明显的周期性主要的周期有11年、22年等。太阳辐射以质子为主$90\sim95\%$),通量可达$10^9\ \mathrm{cm^{-2}s^{1}}$;其次为α粒子($5\sim8\%$)。太阳活动较强时,质子的比例会上升。
使用`SPENVIS`+`SAPPHIRE`模型太阳质子和太阳α粒子任务期间总通量,置信概率为$95\%$(即实际情况大约只有$5\%$的可能通量大于这一估计值)。
<div align=center><img src="docs/spectra-sun.png" style="max-width: 80%;"></div>
可以发现,整个任务期间的总通量不超过$10^3\ \mathrm{cm^{-2}}$,远远小于银河宇宙射线和俘获辐射带的通量,因此在后续模拟中忽略这一因素的剂量。
#### 俘获辐射带[^3]
近地俘获辐射带被称为`Van Allen`带,是部分宇宙射线、宇宙射线与地球磁场和大气层作用产生的带电粒子被地磁场俘获形成的辐射带,分为内外两个辐射带。
电子能量可达$7\ \mathrm{MeV}$,质子能量可达$600\ \mathrm{MeV}$,重带电粒子可达$50\ \mathrm{MeV/u}$,绝大部分是中低能量。
内带的高度一般在$600\ \mathrm{km}$以上,但是在高纬度地区和南大西洋地区,由于地磁异常,内袋高度会下降至$\sim300\ \mathrm{km}$,因此只有经过这些区域时才会有明显的俘获带电粒子通量。
<div align=center><img src="docs/fluxmap.png" style="max-width: 80%;"></div>
使用`VDL`的`AE8/AP8`模型,计算轨道上的太阳活动极大时的俘获质子通量和太阳活动极小时的俘获电子通量,对整个任务期间求均值,获得俘获质子/电子通量的能谱。同时使用`AE9/AP9`模型进行计算,通量略高于`AE8/AP8`模型。保险起见,采用`AE9/AP9`模型的结果。
<div align=center><img src="docs/spectra-ep.png" style="max-width: 80%;"><br /><span style="color: gray;font-size: 12px;">AE8/AP8模型结果</span></div>
<div align=center><img src="docs/spectra-ep-9.png" style="max-width: 80%;"><br /><span style="color: gray;font-size: 12px;">AE9/AP9模型结果</span></div>
### 辐射环境拟合
#### 银河宇宙射线[^4]
考虑`GCR`中1号`H`至28号`Ni`)元素的强度模型,定义粒子刚度(`particle rigidity`$R=\frac{pc}{Ze}$,其中$p$是粒子动量,$c$为光速,$Ze$是粒子电荷量,则有:
$$
F(p,t) = \frac{C_i\beta^{\alpha_i}}{R(p)^{\gamma_i}}\left[\frac{R(p)}{R(p)+(0.37+3\times10^{-4}W(t)^{1.45})}\right]^{b\cdot W(t)+c}\frac{A_i}{Z_i}\frac{1}{\beta}
$$
其中$pc=\sqrt{2m_0c^2E+E^2}$,不考虑$t$,则$W(t)$为常数,$C_i$$\gamma_i$$\alpha_i$为与粒子有关的常数,$A_i$$Z_i$分别为质量数与电荷数,$\beta=\frac{v}{c}=\frac{pc}{\sqrt{m_0^2c^4+E^2}}$,则可简化为:
$$
F(pc) = \frac{C_1\beta^{\alpha-1}}{pc}\left(\frac{pc}{pc+C_2}\right)^{C_3}
$$
同时考虑简单的双指数模型:
$$
F(E)=C_1e^{-C_2E}(1-e^{-C_3E+C_4})
$$
两者同时进行拟合与比较,同时考虑简洁性,除`H`以外,其余元素均采用双指数模型,`H`采用简化模型。
<div align=center>
| Z | H | He | Li | Be | B | C | N | O | F | Ne |
|:--:|:-------:|:-------:|:-------:|:-------:|:-------:|:-------:|:-------:|:-------:|:-------:|:-------:|
| $R^2$ | 0.98915 | 0.98936 | 0.99755 | 0.99708 | 0.99569 | 0.98936 | 0.98892 | 0.98936 | 0.99323 | 0.99014 |
| Z | Na | Mg | Al | Si | P | S | Cl | Ar | K | Ca |
| $R^2$ | 0.99263 | 0.98972 | 0.99217 | 0.98873 | 0.99183 | 0.98873 | 0.99087 | 0.99432 | 0.98963 | 0.98935 |
| Z | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | | |
| $R^2$ | 0.99251 | 0.9934 | 0.99424 | 0.99313 | 0.99385 | 0.99351 | 0.99426 | 0.99231 | | |
</div>
#### 俘获辐射带
1. 电子[^5]
在轨道较高($L>2.5$)的内带中,电子能谱中有$\sim64\%$符合指数分布,$\sim4\%$符合幂律分布。
但在本例中,轨道较低($L\sim1.06$),因此使用指数模型$j = j_0e^{-\frac{E}{E_0}}$和幂律模型$j=j_0E^{-\alpha}$进行拟合,随后使用`Origin Lab`对两者进行`BIC test`,最终选用指数模型$j_0=1.333680\times10^6,\ E_0=0.0824$。
<div align=center>
| Model | $R^2$ | BIC | BIC diff |
|:-----:|:-------:|:---------:|:--------:|
| Ex | 0.98107 | 402.50208 | 0 |
| Pow | 0.94279 | 423.51296 | 21.01088 |
</div>
<div align=center><img src="docs/ExFit-trapped-electron.png" style="max-width: 80%;"><br /></div>
2. 质子
与电子保持一致,幂律模型修改为$j=j_0(E-\beta)^{-\alpha}$,进行`BIC test`,最终选用幂律模型$j_0=559.76377,\ \alpha=2.40873,\ \beta=-1.53424$。
<div align=center>
| Model | $R^2$ | BIC | BIC diff |
|:-----:|:-------:|:--------:|:--------:|
| Ex | 0.9957 | 67.24594 | 0 |
| Pow-T | 0.99883 | 39.11969 | 28.12625 |
</div>
<div align=center><img src="docs/ExFit-trapped-proton.png" style="max-width: 80%;"><br /></div>
## 辐射源设置
考虑在`World`球面上均匀随机发射粒子(各向同性),保证入射方向为球内,则球面上的计数率为:
$$
F = A\int_{E_a}^{E_b} \phi(E)\mathrm{d}E,\ A=4\pi R^2
$$
`GCR`的单位为$\mathrm{m^{-2}sr^{-1}s^{-1}}$,乘以$4\pi A$即可得到计数率;俘获辐射的单位为$\mathrm{cm^{-2}s^{-1}}$,乘以$A$即可得到计数率。经过检验模型中使用的外壳3层2mm 铝 + 10mm 芳纶 + 5mm 铝)能够抵挡能量在$50\ \mathrm{MeV}$以下的质子和能量在$100\ \mathrm{keV}$以下的电子。
考虑到`GCR`和俘获辐射计数率相差太大,分为两部分分别进行模拟,同时按比例进行放缩,保证每一类粒子的模拟入射数目均不小于$10^5$。模拟得到剂量率后,乘以缩放系数和任务时长($30\ \mathrm{d}\times86400\ \mathrm{s/d}$),即可得到完整剂量。
<div align=center>
| Partical | Model | $E_{min}(\mathrm{MeV})$ | $E_{max}(\mathrm{MeV})$ | Flux($\mathrm{s^{-1}}$) | Run | Zoom Factor |
|:--------:|:--------------------------------------------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-------:|:-----------:|
| $e^{-}$ | $j=j_0e^{-\frac{E}{E_0}}$ | 0.1 | 10 | 9.23242E+11 | 923242 | 999999.8096 |
| `p` | $j=j_0(E-\beta)^{-\alpha}$ | 50 | 1000 | 42853994.15 | 100000 | 428.5399415 |
| `H` | $\frac{C_1\beta^{\alpha-1}}{pc}\left(\frac{pc}{pc+C_2}\right)^{C_3}$ | 200 | 100000 | 12854310.92 | 100000 | 128.5431092 |
| `He` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 1718828.12 | 100000 | 17.1882812 |
| `Li` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 12982.36284 | 100000 | 0.129823628 |
| `Be` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 6687.159271 | 100000 | 0.066871593 |
| `B` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 17093.65985 | 100000 | 0.170936599 |
| `C` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 52245.07239 | 100000 | 0.522450724 |
| `N` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 13564.66838 | 100000 | 0.135646684 |
| `O` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 48807.93662 | 100000 | 0.488079366 |
| `F` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 1122.681148 | 100000 | 0.011226811 |
| `Ne` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 8065.236798 | 100000 | 0.080652368 |
| `Na` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 1865.503552 | 100000 | 0.018655036 |
| `Mg` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 10928.24228 | 100000 | 0.109282423 |
| `Al` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 1938.943418 | 100000 | 0.019389434 |
| `Si` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 8262.870777 | 100000 | 0.082628708 |
| `P` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 413.5749377 | 100000 | 0.004135749 |
| `S` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 1659.707 | 100000 | 0.01659707 |
| `Cl` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 371.7198798 | 100000 | 0.003717199 |
| `Ar` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 751.2576633 | 100000 | 0.007512577 |
| `K` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 466.3178791 | 100000 | 0.004663179 |
| `Ca` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 1161.134206 | 100000 | 0.011611342 |
| `Sc` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 231.3722059 | 100000 | 0.002313722 |
| `Ti` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 828.6605823 | 100000 | 0.008286606 |
| `V` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 403.8859746 | 100000 | 0.00403886 |
| `Cr` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 783.4909673 | 100000 | 0.00783491 |
| `Mn` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 570.5548534 | 100000 | 0.005705549 |
| `Fe` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 6024.476681 | 100000 | 0.060244767 |
| `Co` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 20.89166947 | 100000 | 0.000208917 |
| `Ni` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 292.8131737 | 100000 | 0.002928132 |
</div>
### GCR
由于该模型较为简单,使用`Geant4`的`General Particle Source``GPS`)生成源可以较为方便的进行,
```macro
/gps/source/clear
/gps/source/add 1
/gps/particle e-
/gps/pos/type Surface
/gps/pos/shape Sphere
/gps/pos/radius 15 m
/gps/ene/type Exp
/gps/ene/min 100 keV
/gps/ene/max 10 MeV
/gps/ene/ezero 0.0824
/gps/ang/type iso
/gps/ang/maxtheta 90 deg
/run/beamOn
/gps/source/clear
/gps/source/add 1
/gps/particle proton
/gps/pos/type Surface
/gps/pos/shape Sphere
/gps/pos/radius 15 m
/gps/ene/type Pow
/gps/ene/min 200 MeV
/gps/ene/max 100 GeV
/gps/ene/alpha 2.40873
/gps/ang/type iso
/gps/ang/maxtheta 90 deg
/run/beamOn 100000
```
### 俘获辐射
由于模型较为复杂,且需要发射的粒子种类繁多,因此该部分的粒子使用`G4`自行生成。
假定`Co`的计数率为1设定其他粒子的计数率模拟`7070130`个入射事件,因此最终的剂量需要乘以$2.09\ \mathrm{s^{-1}}\times30\ \mathrm{d}\times86400\ \mathrm{s/d}$倍。
## 空间站建模
1. 尺寸与分区[^6]
<div align=center><img src="docs/size.webp" style="max-width: 50%;"></div>
* 全长16.6 m
* 总重22.5 t
* 体积143.6 $\mathrm{m^3}$
* 分区:
* 大柱段
* 外径4.2 m
* 长度4.32 + 2.40 m (生活控制舱 + 资源舱)(直线过渡)
* 过渡段0.815 m
* 小柱端
* 外径2.8 m
* 长度5.18 m
* 过渡段0.33 m
* 节点舱:以直径 2.8 m 的球体近似
2. 材料
* 外壳: 3层 2mm 铝 + 10mm 芳纶 + 5mm 铝
<div align=center><img src="docs/Shell.png" style="max-width: 40%;"></div>
* 5系铝合金[^7]
* 泰普龙[^8]
<div align=center><img src="docs/Taparan.png" style="max-width: 30%;"></div>
* 填充:金属为主,使得总重大致相当
* 内部:空气
* 玻璃:有机玻璃(`G4_PLEXIGLASS`
3. 特别区域
睡眠区无填充,仅考虑加厚外壳为 3层 5mm 铝 + 15mm 芳纶 + 10mm 铝
## 待改进
* 建模
* 体模
* 空间站模型
* 材料
* 大小
* 辐射环境
* 太阳活动极大时
* 太阳活动极小时
* 更长的任务尺度
* 各向异性的模拟(如俘获辐射带质子各向异性通量)
* 太阳质子的检验
[^1]: [中国空间站轨道参数](http://www.cmse.gov.cn/gfgg/zgkjzgdcs/)
[^2]: 程彭超,闵锐.近地空间辐射环境与防护方法概述[J].辐射防护通讯,2017,37(01):14-21.
[^3]: Bourdarie S, Xapsos M. The near-earth space radiation environment[J]. IEEE transactions on nuclear science, 2008, 55(4): 1810-1832.
[^4]: Matthiä D, Berger T, Mrigakshi A I, et al. A ready-to-use galactic cosmic ray model[J]. Advances in Space Research, 2013, 51(3): 329-338.
[^5]: Zhao H, Johnston W R, Baker D N, et al. Characterization and evolution of radiation belt electron energy spectra based on the Van Allen Probes measurements[J]. Journal of Geophysical Research: Space Physics, 2019, 124(6): 4217-4232.
[^6]: [【知识点·航天】“天和”核心舱、“天宫”空间站和新一代载人飞船的最新知识点(干货版)](https://zhuanlan.zhihu.com/p/103709953)
[^7]: [中铝造为“天和”号核心舱披“铠甲”壮“筋骨”](https://m.thepaper.cn/baijiahao_12484370)
[^8]: [泰普龙产品相关知识](https://wenku.baidu.com/view/a2ecf93501d8ce2f0066f5335a8102d276a261cd.html)