add: fit2 and fit3;finish frame work
This commit is contained in:
parent
cd286c72f1
commit
54c5277587
BIN
Figure-0.png
Normal file
BIN
Figure-0.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 30 KiB |
BIN
Figure-1.png
Normal file
BIN
Figure-1.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 30 KiB |
BIN
Figure-2.png
Normal file
BIN
Figure-2.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 30 KiB |
BIN
Figure-3.png
Normal file
BIN
Figure-3.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 31 KiB |
BIN
Figure-4.png
Normal file
BIN
Figure-4.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 31 KiB |
40
cal.txt
Normal file
40
cal.txt
Normal file
@ -0,0 +1,40 @@
|
|||||||
|
0 0 0.01006 0.01002 -1.29111
|
||||||
|
0 1 0.00994 0.01009 -1.08340
|
||||||
|
0 2 0.01050 0.01024 -1.15601
|
||||||
|
0 3 0.00998 0.00984 -1.19307
|
||||||
|
0 4 0.01023 0.01009 -0.97504
|
||||||
|
0 5 0.00999 0.01011 -1.18887
|
||||||
|
0 6 0.01008 0.00989 -0.90181
|
||||||
|
0 7 0.00998 0.01002 -1.31894
|
||||||
|
1 0 0.01009 0.00998 -0.84118
|
||||||
|
1 1 0.01000 0.00988 -1.32354
|
||||||
|
1 2 0.00998 0.00997 -1.41626
|
||||||
|
1 3 0.00977 0.00994 -1.38833
|
||||||
|
1 4 0.01003 0.01026 -1.35276
|
||||||
|
1 5 0.00997 0.00981 -1.18387
|
||||||
|
1 6 0.00995 0.00987 -1.02832
|
||||||
|
1 7 0.01036 0.01005 -0.56795
|
||||||
|
2 0 0.01019 0.01026 -0.09668
|
||||||
|
2 1 0.01021 0.01024 -0.41860
|
||||||
|
2 2 0.01033 0.01006 0.23775
|
||||||
|
2 3 0.01027 0.01000 -0.47241
|
||||||
|
2 4 0.01003 0.01032 -0.22038
|
||||||
|
2 5 0.01030 0.01034 -0.39546
|
||||||
|
2 6 0.01004 0.01014 -0.29457
|
||||||
|
2 7 0.01089 0.01086 -0.92415
|
||||||
|
3 0 0.01071 0.01037 -0.46705
|
||||||
|
3 1 0.01092 0.01074 -1.06885
|
||||||
|
3 2 0.01053 0.01067 -0.68895
|
||||||
|
3 3 0.01059 0.01080 -0.96538
|
||||||
|
3 4 0.01098 0.01058 -0.51257
|
||||||
|
3 5 0.01117 0.01110 -1.20546
|
||||||
|
3 6 0.01042 0.01085 -1.06498
|
||||||
|
3 7 0.01055 0.01023 -1.16872
|
||||||
|
4 0 0.01017 0.01043 -0.73180
|
||||||
|
4 1 0.01034 0.01005 -0.89867
|
||||||
|
4 2 0.01039 0.01029 -0.59282
|
||||||
|
4 3 0.01038 0.01029 -0.83104
|
||||||
|
4 4 0.01019 0.01043 -0.56346
|
||||||
|
4 5 0.01065 0.01008 -1.12639
|
||||||
|
4 6 0.01041 0.01034 -0.64923
|
||||||
|
4 7 0.01000 0.01019 -1.03055
|
78
main.py
78
main.py
@ -1,33 +1,79 @@
|
|||||||
import os
|
import os
|
||||||
import re
|
import re
|
||||||
import numpy as np
|
from qdx import Bind
|
||||||
|
from qdx.utils import get_hist, file_filter
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
from qdx import BindFilter, Bind
|
from matplotlib import pyplot as plt
|
||||||
|
|
||||||
binds = []
|
|
||||||
BF = BindFilter()
|
|
||||||
|
|
||||||
path = 'result/bind'
|
path = 'result/bind'
|
||||||
file_list = os.listdir(path)
|
file_list = os.listdir(path)
|
||||||
|
|
||||||
reg = re.compile(r'(([0-9]{4})-([0-9])-([0-9])).txt')
|
reg = re.compile(r'(([0-9]{4})-([0-9])-([0-9])).txt')
|
||||||
|
|
||||||
pbar = tqdm(desc="Gaussian Mixture Bind Filter", total=len(file_list))
|
n, m = 5, 8
|
||||||
|
binds = [[j for j in range(m)] for i in range(n)]
|
||||||
|
for i in range(n):
|
||||||
|
for j in range(m):
|
||||||
|
binds[i][j] = Bind(i, j)
|
||||||
|
|
||||||
|
|
||||||
|
pbar = tqdm(desc="Gaussian Mixture Filter", total=len(file_list))
|
||||||
for file in file_list:
|
for file in file_list:
|
||||||
name, E, n, m = reg.match(file).groups()
|
bind = binds[int(i)][int(j)]
|
||||||
|
|
||||||
|
name, E, i, j = reg.match(file).groups()
|
||||||
file = os.path.join(path, file)
|
file = os.path.join(path, file)
|
||||||
|
|
||||||
BF.filter(file)
|
_, data = file_filter(file)
|
||||||
# BF.draw('result/GMM/' + name + '.png')
|
# bind.draw_filter('result/GMM/' + name + '.png')
|
||||||
# np.savetxt('result/bind-GMM/' + name + '.txt', BF.fit_data, fmt='%d')
|
# np.savetxt('result/bind-GMM/' + name + '.txt', data, fmt='%d')
|
||||||
binds.append(Bind(int(E), int(n), int(m), BF.fit_data))
|
bind.add_data(int(E) / 100, data)
|
||||||
|
|
||||||
pbar.update(1)
|
pbar.update(1)
|
||||||
pbar.close()
|
pbar.close()
|
||||||
|
|
||||||
pbar = tqdm(desc="Bind Linear Fit", total=len(binds))
|
|
||||||
for bind in binds:
|
split_n = [8, 7, 7, 8, 8]
|
||||||
bind.fit()
|
pbar = tqdm(desc="Bind Process", total=n * m)
|
||||||
bind.draw('result/L-FIT/' + bind.name + '.png')
|
for i in range(n):
|
||||||
|
for j in range(m):
|
||||||
|
bind: Bind = binds[i][j]
|
||||||
|
bind.filter()
|
||||||
|
bind.fit1()
|
||||||
|
bind.solve()
|
||||||
|
bind.split(n=split_n[i])
|
||||||
|
bind.fit2()
|
||||||
|
bind.draw_fit1('result/FIT1/' + bind.name + '.png')
|
||||||
|
bind.draw_fit2('result/FIT2/' + bind.name + '.png')
|
||||||
pbar.update(1)
|
pbar.update(1)
|
||||||
pbar.close()
|
pbar.close()
|
||||||
|
|
||||||
|
|
||||||
|
y = [
|
||||||
|
[620, 610, 600, 590, 580, 570, 560, 550],
|
||||||
|
[485, 475, 465, 455, 445, 435, 425],
|
||||||
|
[360, 350, 340, 330, 320, 310, 300],
|
||||||
|
[235, 225, 215, 205, 195, 185, 175, 165],
|
||||||
|
[100, 90, 80, 70, 60, 50, 40, 30]
|
||||||
|
]
|
||||||
|
for i in range(n):
|
||||||
|
k = 1
|
||||||
|
fig = plt.figure(figsize=(14, 6))
|
||||||
|
for j in range(m):
|
||||||
|
ax = fig.add_subplot(int(m / 2), 2, k)
|
||||||
|
|
||||||
|
bind = binds[i][j]
|
||||||
|
bind.fit3(y[i])
|
||||||
|
ny = bind.reg3.predict(bind.x1)
|
||||||
|
c, e = get_hist(ny, delta=0.5)
|
||||||
|
|
||||||
|
ax.scatter(e, c, s=0.5)
|
||||||
|
k += 1
|
||||||
|
fig.savefig('./Figure-' + str(i) + '.png', facecolor='w', transparent=False)
|
||||||
|
plt.tight_layout()
|
||||||
|
plt.close()
|
||||||
|
|
||||||
|
f = open('cal.txt', 'w')
|
||||||
|
for i in range(n):
|
||||||
|
for j in range(m):
|
||||||
|
bind = binds[i][j]
|
||||||
|
f.writelines('{:d} {:d} {:.5f} {:.5f} {:.5f}\n'.format(i, j, bind.k1, bind.k2, bind.b))
|
||||||
|
76
qdx/Bind.py
76
qdx/Bind.py
@ -3,16 +3,7 @@ import matplotlib.pyplot as plt
|
|||||||
from astropy.modeling import models, fitting
|
from astropy.modeling import models, fitting
|
||||||
from sklearn.mixture import GaussianMixture
|
from sklearn.mixture import GaussianMixture
|
||||||
from sklearn.linear_model import LinearRegression
|
from sklearn.linear_model import LinearRegression
|
||||||
|
from .utils import get_hist
|
||||||
def get_hist(data, maxN=50):
|
|
||||||
step = 1
|
|
||||||
edge = np.arange(data.min(), data.max() + 1, step)
|
|
||||||
count, _ = np.histogram(data, bins=edge)
|
|
||||||
while count.max() <= maxN:
|
|
||||||
step += 1
|
|
||||||
edge = np.arange(data.min(), data.max() + 1, step)
|
|
||||||
count, _ = np.histogram(data, bins=edge)
|
|
||||||
return count, (edge[1:] + edge[:-1]) / 2
|
|
||||||
|
|
||||||
class Bind(object):
|
class Bind(object):
|
||||||
flag = 0
|
flag = 0
|
||||||
@ -32,7 +23,7 @@ class Bind(object):
|
|||||||
self.E2 = E
|
self.E2 = E
|
||||||
self.x2, self.y2 = data[:, 0].reshape(-1, 1), data[:, 1].reshape(-1, 1)
|
self.x2, self.y2 = data[:, 0].reshape(-1, 1), data[:, 1].reshape(-1, 1)
|
||||||
|
|
||||||
def fit(self):
|
def fit1(self):
|
||||||
self.reg1 = LinearRegression()
|
self.reg1 = LinearRegression()
|
||||||
self.reg1.fit(self.x1, self.y1)
|
self.reg1.fit(self.x1, self.y1)
|
||||||
self.K1 = self.reg1.coef_[0][0]
|
self.K1 = self.reg1.coef_[0][0]
|
||||||
@ -43,13 +34,26 @@ class Bind(object):
|
|||||||
self.K2 = self.reg2.coef_[0][0]
|
self.K2 = self.reg2.coef_[0][0]
|
||||||
self.C2 = self.reg2.intercept_[0]
|
self.C2 = self.reg2.intercept_[0]
|
||||||
|
|
||||||
|
def filter(self):
|
||||||
|
self.fit1()
|
||||||
|
ny1 = self.y1 - self.reg1.predict(self.x1)
|
||||||
|
ny2 = self.y2 - self.reg2.predict(self.x2)
|
||||||
|
|
||||||
|
idx1 = np.where(ny1 <= ny1.std())[0]
|
||||||
|
idx2 = np.where(ny2 <= ny2.std())[0]
|
||||||
|
|
||||||
|
self.x1 = self.x1[idx1]
|
||||||
|
self.y1 = self.y1[idx1]
|
||||||
|
self.x2 = self.x2[idx2]
|
||||||
|
self.y2 = self.y2[idx2]
|
||||||
|
|
||||||
def solve(self):
|
def solve(self):
|
||||||
self.k1 = (self.E1 - self.E2) / (self.C1 - self.C2)
|
self.k1 = (self.E1 - self.E2) / (self.C1 - self.C2)
|
||||||
self.k2 = -(self.K1 + self.K2) / (self.k1 * 2)
|
self.k2 = -(self.K1 + self.K2) * self.k1 / 2
|
||||||
self.b = (self.E1 - self.C1 * self.k1 + self.E2 - self.C2 * self.k1) / 2
|
self.b = (self.E1 - self.C1 * self.k1 + self.E2 - self.C2 * self.k1) / 2
|
||||||
|
|
||||||
def split(self, n=7):
|
def split(self, n=7):
|
||||||
self.cluster = []
|
self.clusters = []
|
||||||
data = np.concatenate((self.x1, self.y1), axis=1)
|
data = np.concatenate((self.x1, self.y1), axis=1)
|
||||||
|
|
||||||
model = GaussianMixture(n_components=n)
|
model = GaussianMixture(n_components=n)
|
||||||
@ -58,16 +62,17 @@ class Bind(object):
|
|||||||
ny = model.predict(data)
|
ny = model.predict(data)
|
||||||
for i in np.unique(ny):
|
for i in np.unique(ny):
|
||||||
idx = np.where(ny == i)[0]
|
idx = np.where(ny == i)[0]
|
||||||
self.cluster.append(data[idx])
|
self.clusters.append(data[idx])
|
||||||
|
|
||||||
self.cluster = np.array(self.cluster)
|
self.clusters = np.array(self.clusters, dtype=object)
|
||||||
|
self.clusters = sorted(self.clusters, key=lambda x: len(x))
|
||||||
|
|
||||||
def fit2(self):
|
def fit2(self):
|
||||||
self.fx = []
|
self.fx = []
|
||||||
self.fy = []
|
self.fy = []
|
||||||
fitter = fitting.LevMarLSQFitter()
|
fitter = fitting.LevMarLSQFitter()
|
||||||
|
|
||||||
for data in self.cluster:
|
for data in self.clusters:
|
||||||
x1, x2 = data[:, 0], data[:, 1]
|
x1, x2 = data[:, 0], data[:, 1]
|
||||||
c1, e1 = get_hist(x1)
|
c1, e1 = get_hist(x1)
|
||||||
c2, e2 = get_hist(x2)
|
c2, e2 = get_hist(x2)
|
||||||
@ -78,12 +83,16 @@ class Bind(object):
|
|||||||
self.fx.append(fitted_model1.mean.value)
|
self.fx.append(fitted_model1.mean.value)
|
||||||
self.fy.append(fitted_model2.mean.value)
|
self.fy.append(fitted_model2.mean.value)
|
||||||
|
|
||||||
def pX(self, x1=None, x2=None):
|
idx = np.argsort(self.fx)
|
||||||
x1 = x1 if x1 else self.x1
|
|
||||||
x2 = x2 if x2 else self.y1
|
|
||||||
self.px = (self.k2 * x2 - self.k1 * x1) * self.L / self.E1 + self.C
|
|
||||||
|
|
||||||
def draw(self, title):
|
def fit3(self, y):
|
||||||
|
self.fx = np.sort(self.fx)[::-1].reshape(-1, 1)
|
||||||
|
self.reg3 = LinearRegression()
|
||||||
|
self.reg3.fit(self.fx, y)
|
||||||
|
self.K3 = self.reg3.coef_[0]
|
||||||
|
self.C3 = self.reg3.intercept_
|
||||||
|
|
||||||
|
def draw_fit1(self, title):
|
||||||
fig = plt.figure(figsize=(8, 8))
|
fig = plt.figure(figsize=(8, 8))
|
||||||
ax = fig.add_subplot(1, 1, 1)
|
ax = fig.add_subplot(1, 1, 1)
|
||||||
ax.scatter(self.x1, self.y1, s=0.1, c='black', label=r'$E_1$')
|
ax.scatter(self.x1, self.y1, s=0.1, c='black', label=r'$E_1$')
|
||||||
@ -94,9 +103,32 @@ class Bind(object):
|
|||||||
fig.savefig(title, facecolor='w', transparent=False)
|
fig.savefig(title, facecolor='w', transparent=False)
|
||||||
plt.close()
|
plt.close()
|
||||||
|
|
||||||
|
def draw_split(self, title):
|
||||||
|
fig = plt.figure(figsize=(8, 8))
|
||||||
|
ax = fig.add_subplot(1, 1, 1)
|
||||||
|
for data in self.clusters:
|
||||||
|
ax.scatter(data[:, 0], data[:, 1], s=0.1)
|
||||||
|
fig.savefig(title, facecolor='w', transparent=False)
|
||||||
|
plt.close()
|
||||||
|
|
||||||
|
def draw_fit2(self, title):
|
||||||
|
k, n = 1, len(self.clusters)
|
||||||
|
fig = plt.figure(figsize=(8, 10))
|
||||||
|
for data in self.clusters:
|
||||||
|
ax = fig.add_subplot(n, 1, k)
|
||||||
|
x1, x2 = data[:, 0], data[:, 1]
|
||||||
|
c1, e1 = get_hist(x1)
|
||||||
|
c2, e2 = get_hist(x2)
|
||||||
|
ax.scatter(e1, c1, s=0.1)
|
||||||
|
ax.scatter(e2, c2, s=0.1)
|
||||||
|
k += 1
|
||||||
|
plt.tight_layout()
|
||||||
|
fig.savefig(title, facecolor='w', transparent=False)
|
||||||
|
plt.close()
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def name(self):
|
def name(self):
|
||||||
return '{:d}-{:d}-{:d}-{:d}'.format(self.E1, self.E2, self.n, self.m)
|
return '{:.1f}-{:.1f}-{:d}-{:d}'.format(self.E1, self.E2, self.n, self.m)
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def RSquare1(self):
|
def RSquare1(self):
|
||||||
|
@ -1,33 +0,0 @@
|
|||||||
import numpy as np
|
|
||||||
from matplotlib import pyplot as plt
|
|
||||||
from sklearn.mixture import GaussianMixture
|
|
||||||
|
|
||||||
class BindFilter(object):
|
|
||||||
def __init__(self):
|
|
||||||
pass
|
|
||||||
|
|
||||||
def filter(self, file):
|
|
||||||
self.clusters = []
|
|
||||||
self.fit_data = np.array([])
|
|
||||||
|
|
||||||
data = np.loadtxt(file, dtype=np.uint16)
|
|
||||||
|
|
||||||
model = GaussianMixture(n_components=2)
|
|
||||||
model.fit(data)
|
|
||||||
|
|
||||||
ny = model.predict(data)
|
|
||||||
for i in np.unique(ny):
|
|
||||||
idx = np.where(ny == i)[0]
|
|
||||||
self.fit_data = idx if len(idx) > len(self.fit_data) else self.fit_data
|
|
||||||
self.clusters.append(data[idx])
|
|
||||||
|
|
||||||
self.data = data
|
|
||||||
self.fit_data = data[self.fit_data]
|
|
||||||
|
|
||||||
def draw(self, title):
|
|
||||||
fig = plt.figure(figsize=(8, 8))
|
|
||||||
ax = fig.add_subplot(1, 1, 1)
|
|
||||||
for cluster in self.clusters:
|
|
||||||
ax.scatter(cluster[:, 0], cluster[:, 1], s=0.1)
|
|
||||||
fig.savefig(title)
|
|
||||||
plt.close()
|
|
@ -1,2 +1 @@
|
|||||||
from .Bind import Bind
|
from .Bind import Bind
|
||||||
from .BindFilter import BindFilter
|
|
||||||
|
38
qdx/utils.py
Normal file
38
qdx/utils.py
Normal file
@ -0,0 +1,38 @@
|
|||||||
|
import numpy as np
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
from sklearn.mixture import GaussianMixture
|
||||||
|
|
||||||
|
def file_filter(file):
|
||||||
|
filter_data = []
|
||||||
|
fit_data = np.array([])
|
||||||
|
|
||||||
|
data = np.loadtxt(file, dtype=np.uint16)
|
||||||
|
|
||||||
|
model = GaussianMixture(n_components=2)
|
||||||
|
model.fit(data)
|
||||||
|
|
||||||
|
ny = model.predict(data)
|
||||||
|
for i in np.unique(ny):
|
||||||
|
idx = np.where(ny == i)[0]
|
||||||
|
fit_data = idx if len(idx) > len(fit_data) else fit_data
|
||||||
|
filter_data.append(data[idx])
|
||||||
|
|
||||||
|
return filter_data, data[fit_data]
|
||||||
|
|
||||||
|
def draw_filter(data, title):
|
||||||
|
fig = plt.figure(figsize=(8, 8))
|
||||||
|
ax = fig.add_subplot(1, 1, 1)
|
||||||
|
for cluster in data:
|
||||||
|
ax.scatter(cluster[:, 0], cluster[:, 1], s=0.1)
|
||||||
|
fig.savefig(title, facecolor='w', transparent=False)
|
||||||
|
plt.close()
|
||||||
|
|
||||||
|
def get_hist(data, delta=1, maxN=50):
|
||||||
|
step = delta
|
||||||
|
edge = np.arange(data.min(), data.max() + 1, step)
|
||||||
|
count, _ = np.histogram(data, bins=edge)
|
||||||
|
while count.max() <= maxN:
|
||||||
|
step += delta
|
||||||
|
edge = np.arange(data.min(), data.max() + 1, step)
|
||||||
|
count, _ = np.histogram(data, bins=edge)
|
||||||
|
return count, (edge[1:] + edge[:-1]) / 2
|
Loading…
Reference in New Issue
Block a user