Q3D-Calibration/qdx/utils.py

39 lines
1.1 KiB
Python
Raw Normal View History

2022-07-11 16:24:14 +08:00
import numpy as np
import matplotlib.pyplot as plt
from sklearn.mixture import GaussianMixture
def file_filter(file):
filter_data = []
fit_data = np.array([])
data = np.loadtxt(file, dtype=np.uint16)
model = GaussianMixture(n_components=2)
model.fit(data)
ny = model.predict(data)
for i in np.unique(ny):
idx = np.where(ny == i)[0]
fit_data = idx if len(idx) > len(fit_data) else fit_data
filter_data.append(data[idx])
return filter_data, data[fit_data]
def draw_filter(data, title):
fig = plt.figure(figsize=(8, 8))
ax = fig.add_subplot(1, 1, 1)
for cluster in data:
ax.scatter(cluster[:, 0], cluster[:, 1], s=0.1)
fig.savefig(title, facecolor='w', transparent=False)
plt.close()
def get_hist(data, delta=1, maxN=50):
step = delta
edge = np.arange(data.min(), data.max() + 1, step)
count, _ = np.histogram(data, bins=edge)
while count.max() <= maxN:
step += delta
edge = np.arange(data.min(), data.max() + 1, step)
count, _ = np.histogram(data, bins=edge)
return count, (edge[1:] + edge[:-1]) / 2