Q3D-Calibration/include/LevenbergMarquardt.h

121 lines
2.8 KiB
C
Raw Normal View History

2022-07-04 23:52:05 +08:00
#pragma once
#ifndef LMM_h
#define LMM_h
#include "utils.h"
#include <Eigen/Dense>
#include <cmath>
#include <iostream>
class LevenbergMarquardt {
public:
LevenbergMarquardt(int L_, double* parma_, double (*Func_)(double, double*),
double* (*Gunc_)(double, double*), int type_ = 0);
~LevenbergMarquardt();
public:
void addData(double x, double y);
double* solve();
public:
double mu = 1., eps = 1e-5;
double* parma;
double (*Func)(double, double*);
double* (*Gunc)(double, double*);
int L, type_, maxIter = 20;
std::vector<Eigen::Vector2d> data;
private:
void calmJ_vF();
void calmH_vG();
double calMse(double* parma_);
private:
Eigen::MatrixXd mJ; // 雅克比矩阵
Eigen::MatrixXd mH; // H矩阵
Eigen::VectorXd vF; // 误差向量
Eigen::VectorXd vG; // 左侧
};
LevenbergMarquardt::LevenbergMarquardt(int L_, double* parma_, double (*Func_)(double, double*),
double* (*Gunc_)(double, double*), int type_) {
L = L_;
parma = parma_;
Func = Func_;
Gunc = Gunc_;
this->type_ = type_;
}
LevenbergMarquardt::~LevenbergMarquardt() {}
void LevenbergMarquardt::addData(double x, double y) { data.push_back(Eigen::Vector2d(x, y)); }
void LevenbergMarquardt::calmJ_vF() {
double x, y;
double* resJ;
mJ.resize(data.size(), L);
vF.resize(data.size());
for (int i = 0; i < data.size(); i++) {
Eigen::Vector2d& point = data.at(i);
x = point(0), y = point(1);
resJ = (*Gunc)(x, parma);
for (int j = 0; j < L; j++) mJ(i, j) = resJ[j];
vF(i) = y - (*Func)(x, parma);
}
}
void LevenbergMarquardt::calmH_vG() {
mH = mJ.transpose() * mJ;
vG = -mJ.transpose() * vF;
}
double LevenbergMarquardt::calMse(double* parma_) {
int n = data.size();
double x, y, mse = 0;
for (int i = 0; i < n; i++) {
Eigen::Vector2d& point = data.at(i);
x = point(0), y = point(1);
mse += pow(y - (*Func)(x, parma_), 2);
}
return mse / n;
}
double* LevenbergMarquardt::solve() {
double v = 2, cost;
double* parmaNew;
Eigen::VectorXd vX;
Eigen::MatrixXd mT, mD = Eigen::MatrixXd::Zero();
vX.resize(L);
mD.resize(L, L);
for (int i = 0; i < L; i++) mD(i, i) = 1;
for (int k = 0; k < maxIter; k++) {
calmJ_vF();
calmH_vG();
if (type_ == 1) {
mT = mJ * mJ.transpose();
for (int i = 0; i < L; i++) mD(i, i) = sqrt(mT(i, i));
}
mH = mH + mu * mD;
vX = mH.ldlt().solve(vG);
if (vX.norm() <= eps) return parma;
for (int i = 0; i < L; i++) parmaNew[i] = parma[i] + vX[i];
cost = calMse(parma) - calMse(parmaNew);
cost /= vX.transpose() * (mu * vX + vG);
}
return parma;
}
#endif