Q3D-Calibration/qdx/model.py

87 lines
2.0 KiB
Python
Raw Normal View History

import numpy as np
from astropy.modeling import Fittable1DModel, Fittable2DModel, Parameter
class Linear1D(Fittable1DModel):
"""
One dimensional Line model.
Parameters
----------
slope : float
Slope of the straight line
intercept : float
Intercept of the straight line
"""
slope = Parameter(default=1, description="Slope of the straight line")
intercept = Parameter(default=0, description="Intercept of the straight line")
@staticmethod
def evaluate(x, slope, intercept):
return slope * x + intercept
@staticmethod
def fit_deriv(x, slope, intercept):
d_slope = x
d_intercept = np.ones_like(x)
return [d_slope, d_intercept]
class FixedSlopeLine(Fittable1DModel):
"""
Linear model, but fix the slope
Parameters
----------
slope : float
Slope of the line
intercept : float
Intercept of the line
"""
slope = Parameter()
intercept = Parameter()
@staticmethod
def evaluate(x, slope, intercept):
return slope * x + intercept
@staticmethod
def fit_deriv(x, slope, intercept):
d_slope = np.zeros_like(x)
d_intercept = np.ones_like(x)
return [d_slope, d_intercept]
class pXLine(Fittable2DModel):
"""
pX linear model.
$Px = \\frac{k_2y - k_1x}{E}L+CL$.
Parameters
----------
L : float
Slope of the straight line
C : float
Intercept / Slope of the straight line
"""
linear = True
L, C = Parameter(default=40), Parameter(default=0)
k1, k2, b = Parameter(), Parameter(), Parameter()
@staticmethod
def evaluate(x, y, L, C, k1, k2, b):
E = k1 * x + k2 * y + b
return (k2 * y - k1 * x) / E * L + C * L
@staticmethod
def fit_deriv(x, y, L, C, k1, k2, b):
E = k1 * x + k2 * y + b
d_L = (k2 * y - k1 * x) / E + C
d_C = np.full(x.shape, L)
d_k1, d_k2, d_b = np.zeros_like(x), np.zeros_like(x), np.zeros_like(x)
return [d_L, d_C, d_k1, d_k2, d_b]