fix: physics

This commit is contained in:
liuyihui 2023-05-08 23:23:29 +08:00
parent 9e036c8575
commit b1ccf50f64
16 changed files with 35 additions and 910 deletions

View File

@ -44,7 +44,6 @@ private:
static GeneAnalysisManager *instance;
struct detEvent mydata;
// G4int evtNo;
G4String analysisFileName;
TFile *theTFile;

View File

@ -23,7 +23,6 @@ private:
G4UIdirectory* DetectorDir;
G4UIcmdWithADoubleAndUnit* ZoffsetCmd;
G4UIcmdWithADoubleAndUnit* ZactiveshiftCmd;
G4UIcmdWithADouble* PE_BfractionCmd;
G4UIcmdWithAString* DetReactionCmd;
};

View File

@ -22,7 +22,6 @@ public:
private:
GeneHe3detHitsCollection* scintillatorCollection;
G4int HitID;
};
#endif

View File

@ -1,36 +0,0 @@
#ifndef GenePhysicsList_hh
#define GenePhysicsList_hh 1
#include "G4VUserPhysicsList.hh"
#include "globals.hh"
class GenePhysicsList : public G4VUserPhysicsList {
public:
GenePhysicsList();
virtual ~GenePhysicsList();
virtual void SetCuts();
protected:
// construct particles and physics processes
virtual void ConstructParticle();
virtual void ConstructProcess();
virtual void ConstructGeneral();
virtual void ConstructEM();
virtual void ConstructOp();
virtual void ConstructHad();
private:
G4int OpVerblevel;
G4double cutForGamma;
G4double cutForElectron;
G4double cutForPositron;
void ConstructMyBosons();
void ConstructMyLeptons();
void ConstructMyHadrons();
void ConstructMyShortLiveds();
};
#endif

View File

@ -16,7 +16,6 @@ public:
void GeneratePrimaries(G4Event* anEvent);
void SetBeamEnergy(G4double);
void SetAngType(G4String&);
private:
G4ParticleGun* particleGun;

View File

@ -21,8 +21,6 @@ private:
G4UIdirectory* PrimaryDir;
G4UIcmdWithADoubleAndUnit* BeamEnergyCmd;
G4UIcmdWithAString* AngularCmd;
G4UIcmdWithAString* ReactionCmd;
};
#endif

View File

@ -1,16 +1,10 @@
# Macro file for the initialization of example B1
# in interactive session
#
# Set some default verbose
/control/verbose 2
/control/saveHistory
/control/verbose 1
/run/verbose 2
#
# Change the default number of threads (in multi-threaded mode)
#/run/numberOfThreads 4
#
/event/verbose 0
/tracking/verbose 0
# Initialize kernel
/run/initialize
#
# Visualization setting
/control/execute vis.mac

View File

@ -1,3 +1,4 @@
// clang-format off
#include "TROOT.h"
#include "time.h"
@ -9,11 +10,14 @@
#include "G4UIterminal.hh"
#include "G4UnitsTable.hh"
#include "G4VisExecutive.hh"
#include "G4OpticalPhysics.hh"
#include "QGSP_BERT_HP.hh"
#include "GeneDetectorConstruction.hh"
#include "GeneEventAction.hh"
#include "GenePhysicsList.hh"
#include "GenePrimaryGeneratorAction.hh"
#include "GeneRunAction.hh"
// clang-format on
int main(int argc, char **argv) {
// random engine
@ -32,7 +36,9 @@ int main(int argc, char **argv) {
G4RunManager *runManager = new G4RunManager;
runManager->SetUserInitialization(new GeneDetectorConstruction);
runManager->SetUserInitialization(new GenePhysicsList);
G4VModularPhysicsList *physics = new QGSP_BERT_HP;
physics->RegisterPhysics(new G4OpticalPhysics);
runManager->SetUserInitialization(physics);
runManager->SetUserAction(new GenePrimaryGeneratorAction);
runManager->SetUserAction(new GeneRunAction);
@ -48,7 +54,7 @@ int main(int argc, char **argv) {
G4String fileName = argv[1];
UIManager->ApplyCommand(command + fileName);
} else {
UIManager->ApplyCommand("/control/execute vis.mac");
UIManager->ApplyCommand("/control/execute init_vis.mac");
ui->SessionStart();
delete ui;
}

24
run.mac
View File

@ -1,35 +1,25 @@
# Macro file for the initialization phase of "Neutron.cc"
# Sets some default verbose and initializes the graphic.
#
#
# Some Settings
/control/verbose 1
/run/verbose 0
/run/verbose 2
/event/verbose 0
/tracking/verbose 0
# user setting
# 1st reaction
# 2nd energy
# 3rd angular
# 1st energy
# 2nd offset
# 3rd set particle
# energy setting
/Gene/PrimaryGA/SetBeamEnergy 1.0 MeV # alpha energy for 22Ne(a,n)25Mg reaction
# angular setting
/Gene/PrimaryGA/SetAngular ISO # ISO or ENDF
# detector offset setting
/Gene/Detector/SetZoffset 0.0 mm # default: 0 mm
/Gene/Detector/SetZactiveshift 0.0 mm # default: 0 mm
# Boron fraction in PE moderator
/Gene/Detector/SetBfraction 0.054 # perCent, default: 0.054%
# user setting for runNo of output file
/Gene/Run/RunNo 00_Ne22an_ISO_1000keV_zoffset0mm_zshift0mm_B054_100000evts_Coll60mm
# /Gene/Run/RunNo 00_Ne22an_1000keV_zoffset0mm_zshift0mm_10000evts
/run/initialize
# gsp particle
/gun/particle neutron
/run/beamOn 1000
/run/beamOn 10000

View File

@ -3,7 +3,6 @@
GeneAnalysisManager* GeneAnalysisManager::instance = 0;
GeneAnalysisManager::GeneAnalysisManager() : analysisFileName("Simulation_Ne22an.root"), theTFile(0), tr(0) {
// evtNo = 0;
memset(&mydata, 0x00, sizeof(mydata));
}
@ -34,8 +33,6 @@ void GeneAnalysisManager::FillAng(G4double thetacm, G4double thetalab) {
mydata.Thetalab = thetalab;
}
// void GeneAnalysisManager::EventNo() { evtNo++; }
void GeneAnalysisManager::book() {
// delete all associated variables created via new, moreover it delete itself.
if (theTFile != 0) delete theTFile;
@ -62,6 +59,5 @@ void GeneAnalysisManager::save() {
theTFile->Write();
theTFile->Close();
}
// evtNo = 0;
// 4cout<<" --> reactNum: "<< reactNum <<G4endl;
}

View File

@ -29,7 +29,6 @@ GeneDetectorConstructionMessenger::GeneDetectorConstructionMessenger(GeneDetecto
GeneDetectorConstructionMessenger::~GeneDetectorConstructionMessenger() {
delete ZoffsetCmd;
delete ZactiveshiftCmd;
delete PE_BfractionCmd;
delete DetectorDir;
}

View File

@ -23,15 +23,14 @@ GeneEventAction::~GeneEventAction() {}
void GeneEventAction::BeginOfEventAction(const G4Event* evt) {
G4int evtNb = evt->GetEventID();
if (evtNb % 1000 == 0) G4cout << "Event No." << evtNb << G4endl;
G4SDManager* SDman = G4SDManager::GetSDMpointer();
G4SDManager* SDman = G4SDManager::GetSDMpointer();
if (GeneHe3detSDCollID == -1) {
GeneHe3detSDCollID = SDman->GetCollectionID("GeneHe3detHitCollection");
}
}
void GeneEventAction::EndOfEventAction(const G4Event* evt) {
// G4int event_id = evt->GetEventID();
G4HCofThisEvent* HCE = evt->GetHCofThisEvent();
GeneHe3detHitsCollection* GeneHe3detHC = 0;
GeneAnalysisManager* analysisManager = GeneAnalysisManager::GetInstance();

View File

@ -17,21 +17,20 @@ GeneHe3detSD::GeneHe3detSD(G4String name) : G4VSensitiveDetector(name) {
GeneHe3detSD::~GeneHe3detSD() {}
void GeneHe3detSD::Initialize(G4HCofThisEvent*) {
void GeneHe3detSD::Initialize(G4HCofThisEvent* HCE) {
scintillatorCollection = new GeneHe3detHitsCollection(SensitiveDetectorName, collectionName[0]);
HitID = -1;
static G4int HCID = -1;
if (HCID < 0) HCID = G4SDManager::GetSDMpointer()->GetCollectionID(collectionName[0]);
HCE->AddHitsCollection(HCID, scintillatorCollection);
}
G4bool GeneHe3detSD::ProcessHits(G4Step* aStep, G4TouchableHistory*) {
G4double edep = aStep->GetTotalEnergyDeposit();
if (edep == 0.) return false;
G4ParticleDefinition* particleType = aStep->GetTrack()->GetDefinition();
G4String particleName = particleType->GetParticleName();
// G4double stepl = 0.;
// if (particleType->GetPDGCharge() != 0.)
// stepl = aStep->GetStepLength();
if (particleName == "opticalphoton") return false;
if ((edep == 0.)) return false;
G4StepPoint* preStepPoint = aStep->GetPreStepPoint();
G4TouchableHistory* theTouchable = (G4TouchableHistory*)(preStepPoint->GetTouchable());
@ -46,17 +45,11 @@ G4bool GeneHe3detSD::ProcessHits(G4Step* aStep, G4TouchableHistory*) {
newHit->SetParticle(particleName);
newHit->SetParticleEnergy(aStep->GetPreStepPoint()->GetKineticEnergy());
HitID = scintillatorCollection->insert(newHit);
scintillatorCollection->insert(newHit);
return true;
}
void GeneHe3detSD::EndOfEvent(G4HCofThisEvent* HCE) {
G4String HCname = collectionName[0];
static G4int HCID = -1;
if (HCID < 0) HCID = G4SDManager::GetSDMpointer()->GetCollectionID(HCname);
HCE->AddHitsCollection(HCID, scintillatorCollection);
G4int nHits = scintillatorCollection->entries();
if (verboseLevel >= 1) G4cout << " Si collection: " << nHits << " hits" << G4endl;
if (verboseLevel >= 2) scintillatorCollection->PrintAllHits();

View File

@ -1,746 +0,0 @@
#include "GenePhysicsList.hh"
#include "G4ChipsKaonMinusInelasticXS.hh"
#include "G4ChipsKaonPlusInelasticXS.hh"
#include "G4ChipsKaonZeroInelasticXS.hh"
#include "G4ParticleDefinition.hh"
#include "G4ParticleTable.hh"
#include "G4ParticleTypes.hh"
#include "G4ParticleWithCuts.hh"
#include "G4ProcessManager.hh"
#include "G4ProcessVector.hh"
#include "G4SystemOfUnits.hh"
#include "G4UserLimits.hh"
#include "G4ios.hh"
#include "globals.hh"
#include <iomanip>
GenePhysicsList::GenePhysicsList() : G4VUserPhysicsList() {
defaultCutValue = 1.0 * micrometer;
cutForGamma = defaultCutValue;
cutForElectron = 1 * nanometer;
cutForPositron = defaultCutValue;
SetVerboseLevel(1);
OpVerblevel = 0;
}
GenePhysicsList::~GenePhysicsList() {}
// ********** Construct Particles **********
void GenePhysicsList::ConstructParticle() {
ConstructMyBosons();
ConstructMyLeptons();
ConstructMyHadrons();
ConstructMyShortLiveds();
}
// Boson 玻色子
void GenePhysicsList::ConstructMyBosons() {
G4Geantino::GeantinoDefinition();
G4ChargedGeantino::ChargedGeantinoDefinition();
G4Gamma::GammaDefinition();
G4OpticalPhoton::OpticalPhotonDefinition();
}
// Lepoton 轻子
void GenePhysicsList::ConstructMyLeptons() {
G4Electron::ElectronDefinition();
G4Positron::PositronDefinition();
G4MuonPlus::MuonPlusDefinition();
G4MuonMinus::MuonMinusDefinition();
G4NeutrinoE::NeutrinoEDefinition();
G4AntiNeutrinoE::AntiNeutrinoEDefinition();
G4NeutrinoMu::NeutrinoMuDefinition();
G4AntiNeutrinoMu::AntiNeutrinoMuDefinition();
}
#include "G4BaryonConstructor.hh"
#include "G4IonConstructor.hh"
#include "G4MesonConstructor.hh"
// Hadron 强子
void GenePhysicsList::ConstructMyHadrons() {
// Baryon 重子
G4BaryonConstructor bConstructor;
bConstructor.ConstructParticle();
// Meson 介子
G4MesonConstructor mConstructor;
mConstructor.ConstructParticle();
// Ion 离子
G4IonConstructor iConstructor;
iConstructor.ConstructParticle();
}
#include "G4ShortLivedConstructor.hh"
// ShortLived 短寿命
void GenePhysicsList::ConstructMyShortLiveds() {
G4ShortLivedConstructor slConstructor;
slConstructor.ConstructParticle();
}
// ********** Construct Processes **********
void GenePhysicsList::ConstructProcess() {
AddTransportation();
ConstructGeneral();
ConstructEM();
ConstructHad();
ConstructOp();
}
// clang-format off
// ******** Electromagnetic Processes ********
// ****** gamma ******
// 光电效应
#include "G4PhotoElectricEffect.hh"
#include "G4LivermorePhotoElectricModel.hh"
// 康普顿散射
#include "G4ComptonScattering.hh"
#include "G4LivermoreComptonModel.hh"
// 瑞利散射
#include "G4RayleighScattering.hh"
#include "G4LivermoreRayleighModel.hh"
// 电子对
#include "G4GammaConversion.hh"
#include "G4LivermoreGammaConversionModel.hh"
// ****** e- ******
// 韧致辐射
#include "G4eBremsstrahlung.hh"
#include "G4LivermoreBremsstrahlungModel.hh"
// 电离
#include "G4eIonisation.hh"
#include "G4LivermoreIonisationModel.hh"
// 多重散射
#include "G4eMultipleScattering.hh"
// ****** e+ ******
// 韧致辐射
#include "G4eBremsstrahlung.hh"
// 电离
#include "G4eIonisation.hh"
// 正负电子湮灭
#include "G4eplusAnnihilation.hh"
// ****** muno ******
// 韧致辐射
#include "G4MuBremsstrahlung.hh"
// 电离
#include "G4MuIonisation.hh"
// 电子对
#include "G4MuPairProduction.hh"
// μ-捕获
#include "G4MuonMinusCapture.hh"
// ****** other ******
// 离子参数化损失模型
#include "G4IonParametrisedLossModel.hh"
// 韧致辐射
#include "G4hBremsstrahlung.hh"
// 电离
#include "G4hIonisation.hh"
// 多重散射
#include "G4hMultipleScattering.hh"
// 离子电离
#include "G4ionIonisation.hh"
// em process options to allow msc step-limitation to be switched off
#include "G4EmParameters.hh"
#include "G4LossTableManager.hh"
#include "G4UAtomicDeexcitation.hh"
#include "G4VAtomDeexcitation.hh"
// clang-format on
void GenePhysicsList::ConstructEM() {
G4EmParameters* param = G4EmParameters::Instance();
// a finer grid of the physic tables in order to improve precision , 100 GeV with 200 bins
param->SetMaxEnergy(100 * GeV);
param->SetNumberOfBinsPerDecade(20);
param->SetMscStepLimitType(fMinimal);
// fluorescence 荧光
param->SetFluo(true);
// Particle (photons, electrons and ions) Induced X-ray Emission (PIXE)
param->SetPixe(true);
// Auger 俄歇电子
param->SetAuger(true);
G4LossTableManager* man = G4LossTableManager::Instance();
// Atomic Deexcitation 原子退激
G4VAtomDeexcitation* ad = man->AtomDeexcitation();
if (!ad) man->SetAtomDeexcitation(new G4UAtomicDeexcitation());
auto particleIterator = GetParticleIterator();
particleIterator->reset();
while ((*particleIterator)()) {
G4ParticleDefinition* particle = particleIterator->value();
G4ProcessManager* pmanager = particle->GetProcessManager();
G4String particleName = particle->GetParticleName();
G4String particleType = particle->GetParticleType();
G4double charge = particle->GetPDGCharge();
if (particleName == "gamma") {
G4PhotoElectricEffect* thePhotoElectricEffect = new G4PhotoElectricEffect();
thePhotoElectricEffect->SetEmModel(new G4LivermorePhotoElectricModel());
pmanager->AddDiscreteProcess(thePhotoElectricEffect);
G4ComptonScattering* theComptonScattering = new G4ComptonScattering();
theComptonScattering->SetEmModel(new G4LivermoreComptonModel());
pmanager->AddDiscreteProcess(theComptonScattering);
G4RayleighScattering* theRayleighScattering = new G4RayleighScattering();
theRayleighScattering->SetEmModel(new G4LivermoreRayleighModel());
pmanager->AddDiscreteProcess(theRayleighScattering);
G4GammaConversion* theGammaConversion = new G4GammaConversion();
theGammaConversion->SetEmModel(new G4LivermoreGammaConversionModel());
pmanager->AddDiscreteProcess(theGammaConversion);
} else if (particleName == "e-") {
G4eMultipleScattering* msc = new G4eMultipleScattering();
msc->SetStepLimitType(fUseDistanceToBoundary);
pmanager->AddProcess(msc,
-1, // G4int ordAtRestDoIt
1, // G4int ordAlongSteptDoIt
-1); // G4int ordPostStepDoIt
// Ionisation
G4eIonisation* eIonisation = new G4eIonisation();
eIonisation->SetEmModel(new G4LivermoreIonisationModel());
eIonisation->SetStepFunction(0.2, 100 * um); // improved precision in tracking
pmanager->AddProcess(eIonisation, -1, 2, 2);
// Bremsstrahlung
G4eBremsstrahlung* eBremsstrahlung = new G4eBremsstrahlung();
eBremsstrahlung->SetEmModel(new G4LivermoreBremsstrahlungModel());
pmanager->AddProcess(eBremsstrahlung, -1, -3, 3);
} else if (particleName == "e+") {
// positron
G4eMultipleScattering* msc = new G4eMultipleScattering();
msc->SetStepLimitType(fUseDistanceToBoundary);
pmanager->AddProcess(msc, -1, 1, 1);
// Ionisation
G4eIonisation* eIonisation = new G4eIonisation();
eIonisation->SetStepFunction(0.2, 100 * um);
pmanager->AddProcess(eIonisation, -1, 2, 2);
// Bremsstrahlung (use default, no low-energy available)
pmanager->AddProcess(new G4eBremsstrahlung(), -1, -1, 3);
// Annihilation
pmanager->AddProcess(new G4eplusAnnihilation(), 0, -1, 4);
} else if (particleName == "mu+" || particleName == "mu-") {
// muon
pmanager->AddProcess(new G4eMultipleScattering, -1, 1, 1);
pmanager->AddProcess(new G4MuIonisation(), -1, 2, 2);
pmanager->AddProcess(new G4MuBremsstrahlung(), -1, -1, 3);
pmanager->AddProcess(new G4MuPairProduction(), -1, -1, 4);
if (particleName == "mu-") pmanager->AddProcess(new G4MuonMinusCapture(), 0, -1, -1);
} else if (particleName == "proton" || particleName == "pi+" || particleName == "pi-") {
// multiple scattering
pmanager->AddProcess(new G4hMultipleScattering, -1, 1, 1);
// ionisation
G4hIonisation* hIonisation = new G4hIonisation();
hIonisation->SetStepFunction(0.2, 50 * um);
pmanager->AddProcess(hIonisation, -1, 2, 2);
// bremmstrahlung
pmanager->AddProcess(new G4hBremsstrahlung, -1, -3, 3);
} else if (particleName == "alpha" || particleName == "deuteron" || particleName == "triton" ||
particleName == "He3") {
// multiple scattering
pmanager->AddProcess(new G4hMultipleScattering, -1, 1, 1);
// ionisation
G4ionIonisation* ionIoni = new G4ionIonisation();
ionIoni->SetStepFunction(0.1, 20 * um);
pmanager->AddProcess(ionIoni, -1, 2, 2);
} else if (particleName == "GenericIon") {
// OBJECT may be dynamically created as either a GenericIon or nucleus
// G4Nucleus exists and therefore has particle type nucleus
// genericIon:
// multiple scattering
pmanager->AddProcess(new G4hMultipleScattering, -1, 1, 1);
// ionisation
G4ionIonisation* ionIoni = new G4ionIonisation();
ionIoni->SetEmModel(new G4IonParametrisedLossModel());
ionIoni->SetStepFunction(0.1, 20 * um);
pmanager->AddProcess(ionIoni, -1, 2, 2);
}
else if ((!particle->IsShortLived()) && (charge != 0.0) && (particle->GetParticleName() != "chargedgeantino")) {
// all others charged particles except geantino
G4hMultipleScattering* aMultipleScattering = new G4hMultipleScattering();
G4hIonisation* ahadronIon = new G4hIonisation();
// multiple scattering
pmanager->AddProcess(aMultipleScattering, -1, 1, 1);
// ionisation
pmanager->AddProcess(ahadronIon, -1, 2, 2);
}
}
}
// ******** Optical Processes ********
#include "G4OpAbsorption.hh"
#include "G4OpBoundaryProcess.hh"
#include "G4OpRayleigh.hh"
#include "G4Scintillation.hh"
void GenePhysicsList::ConstructOp() {
// default scintillation process
G4Scintillation* theScintProcessDef = new G4Scintillation("Scintillation");
theScintProcessDef->DumpPhysicsTable();
theScintProcessDef->SetTrackSecondariesFirst(true);
theScintProcessDef->SetScintillationYieldFactor(1.0);
theScintProcessDef->SetScintillationExcitationRatio(0.0);
theScintProcessDef->SetVerboseLevel(OpVerblevel);
// scintillation process for alpha:
G4Scintillation* theScintProcessAlpha = new G4Scintillation("Scintillation");
theScintProcessAlpha->SetTrackSecondariesFirst(true);
theScintProcessAlpha->SetScintillationYieldFactor(1.1);
theScintProcessAlpha->SetScintillationExcitationRatio(1.0);
theScintProcessAlpha->SetVerboseLevel(OpVerblevel);
// scintillation process for heavy nuclei
G4Scintillation* theScintProcessNuc = new G4Scintillation("Scintillation");
theScintProcessNuc->SetTrackSecondariesFirst(true);
theScintProcessNuc->SetScintillationYieldFactor(0.2);
theScintProcessNuc->SetScintillationExcitationRatio(1.0);
theScintProcessNuc->SetVerboseLevel(OpVerblevel);
// optical processes
G4OpAbsorption* theAbsorptionProcess = new G4OpAbsorption();
G4OpRayleigh* theRayleighScatteringProcess = new G4OpRayleigh();
G4OpBoundaryProcess* theBoundaryProcess = new G4OpBoundaryProcess();
theAbsorptionProcess->SetVerboseLevel(OpVerblevel);
theRayleighScatteringProcess->SetVerboseLevel(OpVerblevel);
theBoundaryProcess->SetVerboseLevel(OpVerblevel);
auto particleIterator = GetParticleIterator();
particleIterator->reset();
while ((*particleIterator)()) {
G4ParticleDefinition* particle = particleIterator->value();
G4ProcessManager* pmanager = particle->GetProcessManager();
G4String particleName = particle->GetParticleName();
if (theScintProcessDef->IsApplicable(*particle)) {
if (particle->GetParticleName() == "GenericIon") {
pmanager->AddProcess(theScintProcessNuc);
pmanager->SetProcessOrderingToLast(theScintProcessNuc, idxAtRest);
pmanager->SetProcessOrderingToLast(theScintProcessNuc, idxPostStep);
} else if (particle->GetParticleName() == "alpha") {
pmanager->AddProcess(theScintProcessAlpha);
pmanager->SetProcessOrderingToLast(theScintProcessAlpha, idxAtRest);
pmanager->SetProcessOrderingToLast(theScintProcessAlpha, idxPostStep);
} else {
pmanager->AddProcess(theScintProcessDef);
pmanager->SetProcessOrderingToLast(theScintProcessDef, idxAtRest);
pmanager->SetProcessOrderingToLast(theScintProcessDef, idxPostStep);
}
}
if (particleName == "opticalphoton") {
pmanager->AddDiscreteProcess(theAbsorptionProcess);
pmanager->AddDiscreteProcess(theRayleighScatteringProcess);
pmanager->AddDiscreteProcess(theBoundaryProcess);
}
}
}
// ******** Hadronic Processes ********
// ****** Elastic ******
#include "G4ChipsElasticModel.hh"
#include "G4ElasticHadrNucleusHE.hh"
#include "G4HadronElasticProcess.hh"
// ****** Inelastic ******
#include "G4AlphaInelasticProcess.hh"
#include "G4AntiNeutronInelasticProcess.hh"
#include "G4AntiProtonInelasticProcess.hh"
#include "G4DeuteronInelasticProcess.hh"
#include "G4KaonMinusInelasticProcess.hh"
#include "G4KaonPlusInelasticProcess.hh"
#include "G4KaonZeroLInelasticProcess.hh"
#include "G4KaonZeroSInelasticProcess.hh"
#include "G4NeutronInelasticProcess.hh"
#include "G4PionMinusInelasticProcess.hh"
#include "G4PionPlusInelasticProcess.hh"
#include "G4ProtonInelasticProcess.hh"
#include "G4TritonInelasticProcess.hh"
// ****** High energy FTFP model and Bertini cascade ******
#include "G4CascadeInterface.hh"
#include "G4ExcitedStringDecay.hh"
#include "G4FTFModel.hh"
#include "G4GeneratorPrecompoundInterface.hh"
#include "G4LundStringFragmentation.hh"
#include "G4PreCompoundModel.hh"
#include "G4TheoFSGenerator.hh"
// ****** Cross sections ******
#include "G4AntiNuclElastic.hh"
#include "G4BGGNucleonInelasticXS.hh"
#include "G4BGGPionElasticXS.hh"
#include "G4ComponentAntiNuclNuclearXS.hh"
#include "G4ComponentGGNuclNuclXsc.hh"
#include "G4CrossSectionDataSetRegistry.hh"
#include "G4CrossSectionElastic.hh"
#include "G4CrossSectionInelastic.hh"
#include "G4CrossSectionPairGG.hh"
#include "G4HadronCaptureProcess.hh"
#include "G4HadronElastic.hh"
#include "G4PiNuclearCrossSection.hh"
#include "G4VCrossSectionDataSet.hh"
// ****** Neutron high-precision models: <20 MeV ******
#include "G4ParticleHPCapture.hh"
#include "G4ParticleHPCaptureData.hh"
#include "G4ParticleHPElastic.hh"
#include "G4ParticleHPElasticData.hh"
#include "G4ParticleHPInelastic.hh"
#include "G4ParticleHPInelasticData.hh"
// ****** Stopping ******
#include "G4AntiProtonAbsorptionFritiof.hh"
#include "G4KaonMinusAbsorptionBertini.hh"
#include "G4PiMinusAbsorptionBertini.hh"
void GenePhysicsList::ConstructHad() {
// Elastic models
const G4double elastic_elimitPi = 1.0 * GeV;
G4HadronElastic* elastic_lhep0 = new G4HadronElastic();
G4HadronElastic* elastic_lhep1 = new G4HadronElastic();
elastic_lhep1->SetMaxEnergy(elastic_elimitPi);
G4ChipsElasticModel* elastic_chip = new G4ChipsElasticModel();
G4ElasticHadrNucleusHE* elastic_he = new G4ElasticHadrNucleusHE();
elastic_he->SetMinEnergy(elastic_elimitPi);
// Inelastic scattering
const G4double theFTFMin0 = 0.0 * GeV;
const G4double theFTFMin1 = 4.0 * GeV;
const G4double theFTFMax = 100.0 * TeV;
const G4double theBERTMin0 = 0.0 * GeV;
const G4double theBERTMin1 = 19.0 * MeV;
const G4double theBERTMax = 5.0 * GeV;
const G4double theHPMin = 0.0 * GeV;
const G4double theHPMax = 20.0 * MeV;
G4FTFModel* theStringModel = new G4FTFModel;
G4ExcitedStringDecay* theStringDecay = new G4ExcitedStringDecay(new G4LundStringFragmentation);
theStringModel->SetFragmentationModel(theStringDecay);
G4PreCompoundModel* thePreEquilib = new G4PreCompoundModel(new G4ExcitationHandler);
G4GeneratorPrecompoundInterface* theCascade = new G4GeneratorPrecompoundInterface(thePreEquilib);
G4TheoFSGenerator* theFTFModel0 = new G4TheoFSGenerator("FTFP");
theFTFModel0->SetHighEnergyGenerator(theStringModel);
theFTFModel0->SetTransport(theCascade);
theFTFModel0->SetMinEnergy(theFTFMin0);
theFTFModel0->SetMaxEnergy(theFTFMax);
G4TheoFSGenerator* theFTFModel1 = new G4TheoFSGenerator("FTFP");
theFTFModel1->SetHighEnergyGenerator(theStringModel);
theFTFModel1->SetTransport(theCascade);
theFTFModel1->SetMinEnergy(theFTFMin1);
theFTFModel1->SetMaxEnergy(theFTFMax);
G4CascadeInterface* theBERTModel0 = new G4CascadeInterface;
theBERTModel0->SetMinEnergy(theBERTMin0);
theBERTModel0->SetMaxEnergy(theBERTMax);
G4CascadeInterface* theBERTModel1 = new G4CascadeInterface;
theBERTModel1->SetMinEnergy(theBERTMin1);
theBERTModel1->SetMaxEnergy(theBERTMax);
G4VCrossSectionDataSet* thePiData = new G4CrossSectionPairGG(new G4PiNuclearCrossSection, 91 * GeV);
G4VCrossSectionDataSet* theAntiNucleonData = new G4CrossSectionInelastic(new G4ComponentAntiNuclNuclearXS);
G4ComponentGGNuclNuclXsc* ggNuclNuclXsec = new G4ComponentGGNuclNuclXsc();
G4VCrossSectionDataSet* theGGNuclNuclData = new G4CrossSectionInelastic(ggNuclNuclXsec);
auto particleIterator = GetParticleIterator();
particleIterator->reset();
while ((*particleIterator)()) {
G4ParticleDefinition* particle = particleIterator->value();
G4ProcessManager* pmanager = particle->GetProcessManager();
G4String particleName = particle->GetParticleName();
if (particleName == "pi+") {
// Elastic scattering
G4HadronElasticProcess* theElasticProcess = new G4HadronElasticProcess;
theElasticProcess->AddDataSet(new G4BGGPionElasticXS(particle));
theElasticProcess->RegisterMe(elastic_lhep1);
theElasticProcess->RegisterMe(elastic_he);
pmanager->AddDiscreteProcess(theElasticProcess);
// Inelastic scattering
G4PionPlusInelasticProcess* theInelasticProcess = new G4PionPlusInelasticProcess("inelastic");
theInelasticProcess->AddDataSet(thePiData);
theInelasticProcess->RegisterMe(theFTFModel1);
theInelasticProcess->RegisterMe(theBERTModel0);
pmanager->AddDiscreteProcess(theInelasticProcess);
}
else if (particleName == "pi-") {
// Elastic scattering
G4HadronElasticProcess* theElasticProcess = new G4HadronElasticProcess;
theElasticProcess->AddDataSet(new G4BGGPionElasticXS(particle));
theElasticProcess->RegisterMe(elastic_lhep1);
theElasticProcess->RegisterMe(elastic_he);
pmanager->AddDiscreteProcess(theElasticProcess);
// Inelastic scattering
G4PionMinusInelasticProcess* theInelasticProcess = new G4PionMinusInelasticProcess("inelastic");
theInelasticProcess->AddDataSet(thePiData);
theInelasticProcess->RegisterMe(theFTFModel1);
theInelasticProcess->RegisterMe(theBERTModel0);
pmanager->AddDiscreteProcess(theInelasticProcess);
// Absorption
pmanager->AddRestProcess(new G4PiMinusAbsorptionBertini, ordDefault);
}
else if (particleName == "kaon+") {
// Elastic scattering
G4HadronElasticProcess* theElasticProcess = new G4HadronElasticProcess;
theElasticProcess->RegisterMe(elastic_lhep0);
pmanager->AddDiscreteProcess(theElasticProcess);
// Inelastic scattering
G4KaonPlusInelasticProcess* theInelasticProcess = new G4KaonPlusInelasticProcess("inelastic");
theInelasticProcess->AddDataSet(G4CrossSectionDataSetRegistry::Instance()->GetCrossSectionDataSet(
G4ChipsKaonPlusInelasticXS::Default_Name()));
theInelasticProcess->RegisterMe(theFTFModel1);
theInelasticProcess->RegisterMe(theBERTModel0);
pmanager->AddDiscreteProcess(theInelasticProcess);
}
else if (particleName == "kaon0S") {
// Elastic scattering
G4HadronElasticProcess* theElasticProcess = new G4HadronElasticProcess;
theElasticProcess->RegisterMe(elastic_lhep0);
pmanager->AddDiscreteProcess(theElasticProcess);
// Inelastic scattering
G4KaonZeroSInelasticProcess* theInelasticProcess = new G4KaonZeroSInelasticProcess("inelastic");
theInelasticProcess->AddDataSet(G4CrossSectionDataSetRegistry::Instance()->GetCrossSectionDataSet(
G4ChipsKaonZeroInelasticXS::Default_Name()));
theInelasticProcess->RegisterMe(theFTFModel1);
theInelasticProcess->RegisterMe(theBERTModel0);
pmanager->AddDiscreteProcess(theInelasticProcess);
}
else if (particleName == "kaon0L") {
// Elastic scattering
G4HadronElasticProcess* theElasticProcess = new G4HadronElasticProcess;
theElasticProcess->RegisterMe(elastic_lhep0);
pmanager->AddDiscreteProcess(theElasticProcess);
// Inelastic scattering
G4KaonZeroLInelasticProcess* theInelasticProcess = new G4KaonZeroLInelasticProcess("inelastic");
theInelasticProcess->AddDataSet(G4CrossSectionDataSetRegistry::Instance()->GetCrossSectionDataSet(
G4ChipsKaonZeroInelasticXS::Default_Name()));
theInelasticProcess->RegisterMe(theFTFModel1);
theInelasticProcess->RegisterMe(theBERTModel0);
pmanager->AddDiscreteProcess(theInelasticProcess);
}
else if (particleName == "kaon-") {
// Elastic scattering
G4HadronElasticProcess* theElasticProcess = new G4HadronElasticProcess;
theElasticProcess->RegisterMe(elastic_lhep0);
pmanager->AddDiscreteProcess(theElasticProcess);
// Inelastic scattering
G4KaonMinusInelasticProcess* theInelasticProcess = new G4KaonMinusInelasticProcess("inelastic");
theInelasticProcess->AddDataSet(G4CrossSectionDataSetRegistry::Instance()->GetCrossSectionDataSet(
G4ChipsKaonMinusInelasticXS::Default_Name()));
theInelasticProcess->RegisterMe(theFTFModel1);
theInelasticProcess->RegisterMe(theBERTModel0);
pmanager->AddDiscreteProcess(theInelasticProcess);
pmanager->AddRestProcess(new G4KaonMinusAbsorptionBertini, ordDefault);
}
else if (particleName == "proton") {
// Elastic scattering
G4HadronElasticProcess* theElasticProcess = new G4HadronElasticProcess;
theElasticProcess->AddDataSet(G4CrossSectionDataSetRegistry::Instance()->GetCrossSectionDataSet(
G4ChipsProtonElasticXS::Default_Name()));
theElasticProcess->RegisterMe(elastic_chip);
pmanager->AddDiscreteProcess(theElasticProcess);
// Inelastic scattering
G4ProtonInelasticProcess* theInelasticProcess = new G4ProtonInelasticProcess("inelastic");
theInelasticProcess->AddDataSet(new G4BGGNucleonInelasticXS(G4Proton::Proton()));
theInelasticProcess->RegisterMe(theFTFModel1);
theInelasticProcess->RegisterMe(theBERTModel0);
pmanager->AddDiscreteProcess(theInelasticProcess);
} else if (particleName == "anti_proton") {
// Elastic scattering
const G4double elastic_elimitAntiNuc = 100.0 * MeV;
G4AntiNuclElastic* elastic_anuc = new G4AntiNuclElastic();
elastic_anuc->SetMinEnergy(elastic_elimitAntiNuc);
G4CrossSectionElastic* elastic_anucxs = new G4CrossSectionElastic(elastic_anuc->GetComponentCrossSection());
G4HadronElastic* elastic_lhep2 = new G4HadronElastic();
elastic_lhep2->SetMaxEnergy(elastic_elimitAntiNuc);
G4HadronElasticProcess* theElasticProcess = new G4HadronElasticProcess;
theElasticProcess->AddDataSet(elastic_anucxs);
theElasticProcess->RegisterMe(elastic_lhep2);
theElasticProcess->RegisterMe(elastic_anuc);
pmanager->AddDiscreteProcess(theElasticProcess);
// Inelastic scattering
G4AntiProtonInelasticProcess* theInelasticProcess = new G4AntiProtonInelasticProcess("inelastic");
theInelasticProcess->AddDataSet(theAntiNucleonData);
theInelasticProcess->RegisterMe(theFTFModel0);
pmanager->AddDiscreteProcess(theInelasticProcess);
// Absorption
pmanager->AddRestProcess(new G4AntiProtonAbsorptionFritiof, ordDefault);
}
else if (particleName == "neutron") {
// elastic scattering
G4HadronElasticProcess* theElasticProcess = new G4HadronElasticProcess;
theElasticProcess->AddDataSet(G4CrossSectionDataSetRegistry::Instance()->GetCrossSectionDataSet(
G4ChipsNeutronElasticXS::Default_Name()));
G4HadronElastic* elastic_neutronChipsModel = new G4ChipsElasticModel();
elastic_neutronChipsModel->SetMinEnergy(19.0 * MeV);
theElasticProcess->RegisterMe(elastic_neutronChipsModel);
G4ParticleHPElastic* theElasticNeutronHP = new G4ParticleHPElastic;
theElasticNeutronHP->SetMinEnergy(theHPMin);
theElasticNeutronHP->SetMaxEnergy(theHPMax);
theElasticProcess->RegisterMe(theElasticNeutronHP);
theElasticProcess->AddDataSet(new G4ParticleHPElasticData);
pmanager->AddDiscreteProcess(theElasticProcess);
// inelastic scattering
G4NeutronInelasticProcess* theInelasticProcess = new G4NeutronInelasticProcess("inelastic");
theInelasticProcess->AddDataSet(new G4BGGNucleonInelasticXS(G4Neutron::Neutron()));
theInelasticProcess->RegisterMe(theFTFModel1);
theInelasticProcess->RegisterMe(theBERTModel1);
G4ParticleHPInelastic* theNeutronInelasticHPModel = new G4ParticleHPInelastic;
theNeutronInelasticHPModel->SetMinEnergy(theHPMin);
theNeutronInelasticHPModel->SetMaxEnergy(theHPMax);
theInelasticProcess->RegisterMe(theNeutronInelasticHPModel);
theInelasticProcess->AddDataSet(new G4ParticleHPInelasticData);
pmanager->AddDiscreteProcess(theInelasticProcess);
// capture
G4HadronCaptureProcess* theCaptureProcess = new G4HadronCaptureProcess;
G4ParticleHPCapture* theLENeutronCaptureModel = new G4ParticleHPCapture;
theLENeutronCaptureModel->SetMinEnergy(theHPMin);
theLENeutronCaptureModel->SetMaxEnergy(theHPMax);
theCaptureProcess->RegisterMe(theLENeutronCaptureModel);
theCaptureProcess->AddDataSet(new G4ParticleHPCaptureData);
pmanager->AddDiscreteProcess(theCaptureProcess);
} else if (particleName == "anti_neutron") {
// Elastic scattering
G4HadronElasticProcess* theElasticProcess = new G4HadronElasticProcess;
theElasticProcess->RegisterMe(elastic_lhep0);
pmanager->AddDiscreteProcess(theElasticProcess);
// Inelastic scattering (include annihilation on-fly)
G4AntiNeutronInelasticProcess* theInelasticProcess = new G4AntiNeutronInelasticProcess("inelastic");
theInelasticProcess->AddDataSet(theAntiNucleonData);
theInelasticProcess->RegisterMe(theFTFModel0);
pmanager->AddDiscreteProcess(theInelasticProcess);
}
else if (particleName == "deuteron") {
// Elastic scattering
G4HadronElasticProcess* theElasticProcess = new G4HadronElasticProcess;
theElasticProcess->RegisterMe(elastic_lhep0);
pmanager->AddDiscreteProcess(theElasticProcess);
// Inelastic scattering
G4DeuteronInelasticProcess* theInelasticProcess = new G4DeuteronInelasticProcess("inelastic");
theInelasticProcess->AddDataSet(theGGNuclNuclData);
theInelasticProcess->RegisterMe(theFTFModel1);
theInelasticProcess->RegisterMe(theBERTModel0);
pmanager->AddDiscreteProcess(theInelasticProcess);
}
else if (particleName == "triton") {
// Elastic scattering
G4HadronElasticProcess* theElasticProcess = new G4HadronElasticProcess;
theElasticProcess->RegisterMe(elastic_lhep0);
pmanager->AddDiscreteProcess(theElasticProcess);
// Inelastic scattering
G4TritonInelasticProcess* theInelasticProcess = new G4TritonInelasticProcess("inelastic");
theInelasticProcess->AddDataSet(theGGNuclNuclData);
theInelasticProcess->RegisterMe(theFTFModel1);
theInelasticProcess->RegisterMe(theBERTModel0);
pmanager->AddDiscreteProcess(theInelasticProcess);
} else if (particleName == "alpha") {
// Elastic scattering
G4HadronElasticProcess* theElasticProcess = new G4HadronElasticProcess;
theElasticProcess->RegisterMe(elastic_lhep0);
pmanager->AddDiscreteProcess(theElasticProcess);
// Inelastic scattering
G4AlphaInelasticProcess* theInelasticProcess = new G4AlphaInelasticProcess("inelastic");
theInelasticProcess->AddDataSet(theGGNuclNuclData);
theInelasticProcess->RegisterMe(theFTFModel1);
theInelasticProcess->RegisterMe(theBERTModel0);
pmanager->AddDiscreteProcess(theInelasticProcess);
}
}
}
// ******** Decays ********
#include "G4Decay.hh"
#include "G4IonTable.hh"
#include "G4Ions.hh"
#include "G4RadioactiveDecay.hh"
void GenePhysicsList::ConstructGeneral() {
// Add Decay Process
G4Decay* theDecayProcess = new G4Decay();
auto particleIterator = GetParticleIterator();
particleIterator->reset();
while ((*particleIterator)()) {
G4ParticleDefinition* particle = particleIterator->value();
G4ProcessManager* pmanager = particle->GetProcessManager();
if (theDecayProcess->IsApplicable(*particle) && !particle->IsShortLived()) {
pmanager->AddProcess(theDecayProcess);
// set ordering for PostStepDoIt and AtRestDoIt
pmanager->SetProcessOrdering(theDecayProcess, idxPostStep);
pmanager->SetProcessOrdering(theDecayProcess, idxAtRest);
}
}
// Declare radioactive decay to the GenericIon in the IonTable.
const G4IonTable* theIonTable = G4ParticleTable::GetParticleTable()->GetIonTable();
G4RadioactiveDecay* theRadioactiveDecay = new G4RadioactiveDecay();
for (G4int i = 0; i < theIonTable->Entries(); i++) {
G4String particleName = theIonTable->GetParticle(i)->GetParticleName();
G4String particleType = theIonTable->GetParticle(i)->GetParticleType();
if (particleName == "GenericIon") {
G4ProcessManager* pmanager = theIonTable->GetParticle(i)->GetProcessManager();
pmanager->SetVerboseLevel(verboseLevel);
pmanager->AddProcess(theRadioactiveDecay);
pmanager->SetProcessOrdering(theRadioactiveDecay, idxPostStep);
pmanager->SetProcessOrdering(theRadioactiveDecay, idxAtRest);
}
}
}
// ******** Cuts ********
void GenePhysicsList::SetCuts() {
if (verboseLevel > 1) G4cout << "GenePhysicsList::SetCuts:";
if (verboseLevel > 0) {
G4cout << "GenePhysicsList::SetCuts:";
G4cout << "CutLength : " << G4BestUnit(defaultCutValue, "Length") << G4endl;
}
// special for low energy physics
G4double lowlimit = 250 * eV;
G4ProductionCutsTable::GetProductionCutsTable()->SetEnergyRange(lowlimit, 100. * GeV);
// set cut values for gamma at first and for e- second and next for e+,
// because some processes for e+/e- need cut values for gamma
SetCutValue(cutForGamma, "gamma");
SetCutValue(cutForElectron, "e-");
SetCutValue(cutForPositron, "e+");
if (verboseLevel > 0) DumpCutValuesTable();
}

View File

@ -27,6 +27,12 @@ GenePrimaryGeneratorAction::GenePrimaryGeneratorAction() {
// 通过角分布采样获取随机数
hAng = new TH1F("hAng", "hAng;theta(deg);prob.", 180, 0, 180);
G4double thcm, pthcm;
for (G4int i = 0; i < 180; i++) {
thcm = pi * i / 180.0;
pthcm = 2.0 * pi * std::sin(thcm);
hAng->SetBinContent(i + 1, pthcm);
}
fBeamEnergy = 0;
pMessenger = new GenePrimaryGeneratorActionMessenger(this);
@ -75,65 +81,6 @@ void GenePrimaryGeneratorAction::SetBeamEnergy(G4double val) {
p4_cm = std::sqrt(p4_cm2);
}
// ???
void GenePrimaryGeneratorAction::SetAngType(G4String& name) {
if (name == "ENDF") {
std::ifstream infile("xt_nov21.a");
G4int iN = 0;
if (infile.fail()) {
G4cout << "ifstream: Failure to open input file!!!" << G4endl;
G4cout << "ifstream: Failure to open input file!!!" << G4endl;
G4cout << "ifstream: Failure to open input file!!!" << G4endl;
G4cout << "ifstream: Failure to open input file!!!" << G4endl;
G4cout << "ifstream: Failure to open input file!!!" << G4endl;
G4cin >> iN;
return;
}
G4double Elab[5000], A1[5000], A2[5000], A3[5000];
G4double felab, fecm, fa0, fa1, fa2, fa3;
while (infile >> felab >> fecm >> fa0 >> fa1 >> fa2 >> fa3) {
Elab[iN] = felab;
A1[iN] = fa1;
A2[iN] = fa2;
A3[iN] = fa3;
iN++;
}
infile.close();
TGraph gr1(iN, Elab, A1);
TGraph gr2(iN, Elab, A2);
TGraph gr3(iN, Elab, A3);
fa1 = gr1.Eval(fBeamEnergy, 0, "S");
fa2 = gr2.Eval(fBeamEnergy, 0, "S");
fa3 = gr3.Eval(fBeamEnergy, 0, "S");
G4double thcm, costh, pthcm;
for (G4int i = 0; i < 180; i++) {
thcm = pi * i / 180.0;
costh = std::cos(thcm);
pthcm = 1.0 + fa1 * costh + fa2 * 0.5 * (3.0 * costh * costh - 1.0) +
fa3 * 0.5 * (5.0 * std::pow(costh, 3.0) - 3.0 * costh);
pthcm = pthcm * 2.0 * pi * std::sin(thcm);
if (pthcm < 0.0) pthcm = 0.0;
hAng->SetBinContent(i + 1, pthcm);
}
} else if (name == "ISO") {
G4double thcm, pthcm;
for (G4int i = 0; i < 180; i++) {
thcm = pi * i / 180.0;
pthcm = 2.0 * pi * std::sin(thcm);
hAng->SetBinContent(i + 1, pthcm);
}
} else {
G4cout << "Wrong Angular type!!!!" << G4endl;
G4cout << "Wrong Angular type!!!!" << G4endl;
G4cout << "Wrong Angular type!!!!" << G4endl;
G4cout << "Wrong Angular type!!!!" << G4endl;
G4cout << "Wrong Angular type!!!!" << G4endl;
G4int iN;
G4cin >> iN;
return;
}
}
void GenePrimaryGeneratorAction::GeneratePrimaries(G4Event* anEvent) {
G4double thetacmr, thetalabr;
thetacmr = hAng->GetRandom() / 180.0 * pi;

View File

@ -17,26 +17,15 @@ GenePrimaryGeneratorActionMessenger::GenePrimaryGeneratorActionMessenger(GenePri
BeamEnergyCmd->SetUnitCategory("Energy");
BeamEnergyCmd->SetRange("BeamEnergy>0.0");
BeamEnergyCmd->AvailableForStates(G4State_PreInit, G4State_Idle);
AngularCmd = new G4UIcmdWithAString("/Gene/PrimaryGA/SetAngular", this);
AngularCmd->SetGuidance("Set type of angular distribution.");
AngularCmd->SetParameterName("Angular", false);
AngularCmd->AvailableForStates(G4State_PreInit);
}
GenePrimaryGeneratorActionMessenger::~GenePrimaryGeneratorActionMessenger() {
delete BeamEnergyCmd;
delete PrimaryDir;
delete AngularCmd;
delete ReactionCmd;
}
void GenePrimaryGeneratorActionMessenger::SetNewValue(G4UIcommand* command, G4String newValue) {
if (command == BeamEnergyCmd) {
pPrimaryGeneratorAction->SetBeamEnergy(BeamEnergyCmd->GetNewDoubleValue(newValue));
}
if (command == AngularCmd) {
pPrimaryGeneratorAction->SetAngType(newValue);
}
}