feat: physics list

This commit is contained in:
liuyihui 2023-05-08 11:10:33 +08:00
parent 584c38c0ff
commit 245b06ab9b
14 changed files with 808 additions and 27 deletions

View File

@ -5,7 +5,7 @@
#include "TROOT.h"
#include "TTree.h"
#include <globals.hh>
#include "globals.hh"
struct detEvent {
G4double Thetacm;

View File

@ -6,7 +6,7 @@ class G4VPhysicalVolume;
class GeneDetectorConstructionMessenger;
#include "G4VUserDetectorConstruction.hh"
#include <globals.hh>
#include "globals.hh"
class GeneDetectorConstruction : public G4VUserDetectorConstruction {
public:

View File

@ -2,7 +2,7 @@
#define GeneDetectorConstructionMessenger_hh 1
#include "G4UImessenger.hh"
#include <globals.hh>
#include "globals.hh"
class GeneDetectorConstruction;
class G4UIdirectory;

View File

@ -2,7 +2,7 @@
#define GeneEventAction_hh 1
#include "G4UserEventAction.hh"
#include <globals.hh>
#include "globals.hh"
class GeneEventAction : public G4UserEventAction {
public:

View File

@ -3,7 +3,7 @@
#include "G4VSensitiveDetector.hh"
#include "GeneHe3detHit.hh"
#include <globals.hh>
#include "globals.hh"
class G4Step;
class G4HCofThisEvent;

View File

@ -1,7 +1,36 @@
#ifndef GENEPHYSICSLIST_HH
#define GENEPHYSICSLIST_HH 1
#ifndef GenePhysicsList_hh
#define GenePhysicsList_hh 1
#include "G4VUserPhysicsList.hh"
#include "globals.hh"
#endif
class GenePhysicsList : public G4VUserPhysicsList {
public:
GenePhysicsList();
virtual ~GenePhysicsList();
virtual void SetCuts();
protected:
// construct particles and physics processes
virtual void ConstructParticle();
virtual void ConstructProcess();
virtual void ConstructGeneral();
virtual void ConstructEM();
virtual void ConstructOp();
virtual void ConstructHad();
private:
G4int OpVerblevel;
G4double cutForGamma;
G4double cutForElectron;
G4double cutForPositron;
void ConstructMyBosons();
void ConstructMyLeptons();
void ConstructMyHadrons();
void ConstructMyShortLiveds();
};
#endif

View File

@ -2,7 +2,7 @@
#define GenePrimaryGeneratorAction_hh 1
#include "G4VUserPrimaryGeneratorAction.hh"
#include <globals.hh>
#include "globals.hh"
class G4ParticleGun;
class G4Event;

View File

@ -2,7 +2,7 @@
#define GenePrimaryGeneratorActionMessenger_hh 1
#include "G4UImessenger.hh"
#include <globals.hh>
#include "globals.hh"
class GenePrimaryGeneratorAction;
class G4UIdirectory;

View File

@ -2,7 +2,7 @@
#define GeneRunAction_hh 1
#include "G4UserRunAction.hh"
#include <globals.hh>
#include "globals.hh"
class G4String;
class GeneRunActionMessenger;

View File

@ -2,7 +2,7 @@
#define GeneRunActionMessenger_hh 1
#include "G4UImessenger.hh"
#include <globals.hh>
#include "globals.hh"
class GeneRunAction;
class G4UIdirectory;

View File

@ -11,27 +11,28 @@
#include "G4VisExecutive.hh"
#include "GeneDetectorConstruction.hh"
#include "GeneEventAction.hh"
#include "GenePhysicsList.hh"
#include "GenePrimaryGeneratorAction.hh"
#include "GeneRunAction.hh"
#include "QGSP_BERT_HP.hh"
#include "Randomize.hh"
int main(int argc, char **argv) {
// random engine
// CLHEP::HepJamesRandom randomEngine;
G4long seeds;
seeds = time(NULL);
CLHEP::Ranlux64Engine randomEngine;
CLHEP::HepRandom::setTheEngine(&randomEngine);
CLHEP::HepRandom::setTheSeed(seeds);
CLHEP::HepRandom::showEngineStatus();
G4UIExecutive *ui = nullptr;
if (argc == 1) ui = new G4UIExecutive(argc, argv);
gROOT->GetInterpreter();
CLHEP::HepRandom::setTheEngine(new CLHEP::RanecuEngine);
CLHEP::HepRandom::setTheSeed(time(NULL));
// run manager
G4RunManager *runManager = new G4RunManager;
runManager->SetUserInitialization(new GeneDetectorConstruction);
G4VModularPhysicsList *physicsList = new QGSP_BERT_HP;
physicsList->SetVerboseLevel(1);
runManager->SetUserInitialization(physicsList);
runManager->SetUserInitialization(new GenePhysicsList);
runManager->SetUserAction(new GenePrimaryGeneratorAction);
runManager->SetUserAction(new GeneRunAction);

View File

@ -18,7 +18,7 @@
#include "G4VisAttributes.hh"
#include "GeneDetectorConstructionMessenger.hh"
#include "GeneHe3detSD.hh"
#include <globals.hh>
#include "globals.hh"
GeneDetectorConstruction::GeneDetectorConstruction() {
Zoffset = 0;
@ -106,7 +106,12 @@ G4VPhysicalVolume* GeneDetectorConstruction::Construct() {
ej_200->AddElement(ele_H, 8.5 * perCent);
ej_200->AddElement(ele_C, 91.5 * perCent);
// Material properties table 物质光学属性表
/*
Material properties table
Ref:
1. Geant4 Book For Application Developers, TrackingAndPhysics, physicsProcess, optical-photon-processes
2. Eljen-Catalog: Ej-200
*/
G4MaterialPropertiesTable* ej_200_MPT = new G4MaterialPropertiesTable();
// Optical properties 光学属性
const G4int nEntries = 21;
@ -130,12 +135,12 @@ G4VPhysicalVolume* GeneDetectorConstruction::Construct() {
// Intrinsic properties 本征属性
ej_200_MPT->AddConstProperty("RESOLUTIONSCALE", 10.0); // 本征分辨率
ej_200_MPT->AddConstProperty("SCINTILLATIONYIELD", 10000. / MeV); // 本征光产额
ej_200_MPT->AddConstProperty("YIELDRATIO", 1.0); // 快慢响应之
ej_200_MPT->AddConstProperty("YIELDRATIO", 1.0); // 快成分占
ej_200_MPT->AddConstProperty("FASTSCINTILLATIONRISETIME", 0.9 * ns); // 快成分上升时间
ej_200_MPT->AddConstProperty("FASTTIMECONSTANT", 2.1 * ns); // 快成分衰减时间
ej_200->SetMaterialPropertiesTable(ej_200_MPT);
// ********** Boundary Optical Properties **********
// Boundary Optical Properties 边界光学属性
G4OpticalSurface* ej_200_OpticalSurface = new G4OpticalSurface("ej_200_OpticalSurface");
ej_200_OpticalSurface->SetType(dielectric_metal);
ej_200_OpticalSurface->SetFinish(polished);

746
src/GenePhysicsList.cc Normal file
View File

@ -0,0 +1,746 @@
#include "GenePhysicsList.hh"
#include "G4ChipsKaonMinusInelasticXS.hh"
#include "G4ChipsKaonPlusInelasticXS.hh"
#include "G4ChipsKaonZeroInelasticXS.hh"
#include "G4ParticleDefinition.hh"
#include "G4ParticleTable.hh"
#include "G4ParticleTypes.hh"
#include "G4ParticleWithCuts.hh"
#include "G4ProcessManager.hh"
#include "G4ProcessVector.hh"
#include "G4SystemOfUnits.hh"
#include "G4UserLimits.hh"
#include "G4ios.hh"
#include "globals.hh"
#include <iomanip>
GenePhysicsList::GenePhysicsList() : G4VUserPhysicsList() {
defaultCutValue = 1.0 * micrometer;
cutForGamma = defaultCutValue;
cutForElectron = 1 * nanometer;
cutForPositron = defaultCutValue;
SetVerboseLevel(1);
OpVerblevel = 0;
}
GenePhysicsList::~GenePhysicsList() {}
// ********** Construct Particles **********
void GenePhysicsList::ConstructParticle() {
ConstructMyBosons();
ConstructMyLeptons();
ConstructMyHadrons();
ConstructMyShortLiveds();
}
// Boson 玻色子
void GenePhysicsList::ConstructMyBosons() {
G4Geantino::GeantinoDefinition();
G4ChargedGeantino::ChargedGeantinoDefinition();
G4Gamma::GammaDefinition();
G4OpticalPhoton::OpticalPhotonDefinition();
}
// Lepoton 轻子
void GenePhysicsList::ConstructMyLeptons() {
G4Electron::ElectronDefinition();
G4Positron::PositronDefinition();
G4MuonPlus::MuonPlusDefinition();
G4MuonMinus::MuonMinusDefinition();
G4NeutrinoE::NeutrinoEDefinition();
G4AntiNeutrinoE::AntiNeutrinoEDefinition();
G4NeutrinoMu::NeutrinoMuDefinition();
G4AntiNeutrinoMu::AntiNeutrinoMuDefinition();
}
#include "G4BaryonConstructor.hh"
#include "G4IonConstructor.hh"
#include "G4MesonConstructor.hh"
// Hadron 强子
void GenePhysicsList::ConstructMyHadrons() {
// Baryon 重子
G4BaryonConstructor bConstructor;
bConstructor.ConstructParticle();
// Meson 介子
G4MesonConstructor mConstructor;
mConstructor.ConstructParticle();
// Ion 离子
G4IonConstructor iConstructor;
iConstructor.ConstructParticle();
}
#include "G4ShortLivedConstructor.hh"
// ShortLived 短寿命
void GenePhysicsList::ConstructMyShortLiveds() {
G4ShortLivedConstructor slConstructor;
slConstructor.ConstructParticle();
}
// ********** Construct Processes **********
void GenePhysicsList::ConstructProcess() {
AddTransportation();
ConstructGeneral();
ConstructEM();
ConstructHad();
ConstructOp();
}
// clang-format off
// ******** Electromagnetic Processes ********
// ****** gamma ******
// 光电效应
#include "G4PhotoElectricEffect.hh"
#include "G4LivermorePhotoElectricModel.hh"
// 康普顿散射
#include "G4ComptonScattering.hh"
#include "G4LivermoreComptonModel.hh"
// 瑞利散射
#include "G4RayleighScattering.hh"
#include "G4LivermoreRayleighModel.hh"
// 电子对
#include "G4GammaConversion.hh"
#include "G4LivermoreGammaConversionModel.hh"
// ****** e- ******
// 韧致辐射
#include "G4eBremsstrahlung.hh"
#include "G4LivermoreBremsstrahlungModel.hh"
// 电离
#include "G4eIonisation.hh"
#include "G4LivermoreIonisationModel.hh"
// 多重散射
#include "G4eMultipleScattering.hh"
// ****** e+ ******
// 韧致辐射
#include "G4eBremsstrahlung.hh"
// 电离
#include "G4eIonisation.hh"
// 正负电子湮灭
#include "G4eplusAnnihilation.hh"
// ****** muno ******
// 韧致辐射
#include "G4MuBremsstrahlung.hh"
// 电离
#include "G4MuIonisation.hh"
// 电子对
#include "G4MuPairProduction.hh"
// μ-捕获
#include "G4MuonMinusCapture.hh"
// ****** other ******
// 离子参数化损失模型
#include "G4IonParametrisedLossModel.hh"
// 韧致辐射
#include "G4hBremsstrahlung.hh"
// 电离
#include "G4hIonisation.hh"
// 多重散射
#include "G4hMultipleScattering.hh"
// 离子电离
#include "G4ionIonisation.hh"
// em process options to allow msc step-limitation to be switched off
#include "G4EmParameters.hh"
#include "G4LossTableManager.hh"
#include "G4UAtomicDeexcitation.hh"
#include "G4VAtomDeexcitation.hh"
// clang-format on
void GenePhysicsList::ConstructEM() {
G4EmParameters* param = G4EmParameters::Instance();
// a finer grid of the physic tables in order to improve precision , 100 GeV with 200 bins
param->SetMaxEnergy(100 * GeV);
param->SetNumberOfBinsPerDecade(20);
param->SetMscStepLimitType(fMinimal);
// fluorescence 荧光
param->SetFluo(true);
// Particle (photons, electrons and ions) Induced X-ray Emission (PIXE)
param->SetPixe(true);
// Auger 俄歇电子
param->SetAuger(true);
G4LossTableManager* man = G4LossTableManager::Instance();
// Atomic Deexcitation 原子退激
G4VAtomDeexcitation* ad = man->AtomDeexcitation();
if (!ad) man->SetAtomDeexcitation(new G4UAtomicDeexcitation());
auto particleIterator = GetParticleIterator();
particleIterator->reset();
while ((*particleIterator)()) {
G4ParticleDefinition* particle = particleIterator->value();
G4ProcessManager* pmanager = particle->GetProcessManager();
G4String particleName = particle->GetParticleName();
G4String particleType = particle->GetParticleType();
G4double charge = particle->GetPDGCharge();
if (particleName == "gamma") {
G4PhotoElectricEffect* thePhotoElectricEffect = new G4PhotoElectricEffect();
thePhotoElectricEffect->SetEmModel(new G4LivermorePhotoElectricModel());
pmanager->AddDiscreteProcess(thePhotoElectricEffect);
G4ComptonScattering* theComptonScattering = new G4ComptonScattering();
theComptonScattering->SetEmModel(new G4LivermoreComptonModel());
pmanager->AddDiscreteProcess(theComptonScattering);
G4RayleighScattering* theRayleighScattering = new G4RayleighScattering();
theRayleighScattering->SetEmModel(new G4LivermoreRayleighModel());
pmanager->AddDiscreteProcess(theRayleighScattering);
G4GammaConversion* theGammaConversion = new G4GammaConversion();
theGammaConversion->SetEmModel(new G4LivermoreGammaConversionModel());
pmanager->AddDiscreteProcess(theGammaConversion);
} else if (particleName == "e-") {
G4eMultipleScattering* msc = new G4eMultipleScattering();
msc->SetStepLimitType(fUseDistanceToBoundary);
pmanager->AddProcess(msc,
-1, // G4int ordAtRestDoIt
1, // G4int ordAlongSteptDoIt
-1); // G4int ordPostStepDoIt
// Ionisation
G4eIonisation* eIonisation = new G4eIonisation();
eIonisation->SetEmModel(new G4LivermoreIonisationModel());
eIonisation->SetStepFunction(0.2, 100 * um); // improved precision in tracking
pmanager->AddProcess(eIonisation, -1, 2, 2);
// Bremsstrahlung
G4eBremsstrahlung* eBremsstrahlung = new G4eBremsstrahlung();
eBremsstrahlung->SetEmModel(new G4LivermoreBremsstrahlungModel());
pmanager->AddProcess(eBremsstrahlung, -1, -3, 3);
} else if (particleName == "e+") {
// positron
G4eMultipleScattering* msc = new G4eMultipleScattering();
msc->SetStepLimitType(fUseDistanceToBoundary);
pmanager->AddProcess(msc, -1, 1, 1);
// Ionisation
G4eIonisation* eIonisation = new G4eIonisation();
eIonisation->SetStepFunction(0.2, 100 * um);
pmanager->AddProcess(eIonisation, -1, 2, 2);
// Bremsstrahlung (use default, no low-energy available)
pmanager->AddProcess(new G4eBremsstrahlung(), -1, -1, 3);
// Annihilation
pmanager->AddProcess(new G4eplusAnnihilation(), 0, -1, 4);
} else if (particleName == "mu+" || particleName == "mu-") {
// muon
pmanager->AddProcess(new G4eMultipleScattering, -1, 1, 1);
pmanager->AddProcess(new G4MuIonisation(), -1, 2, 2);
pmanager->AddProcess(new G4MuBremsstrahlung(), -1, -1, 3);
pmanager->AddProcess(new G4MuPairProduction(), -1, -1, 4);
if (particleName == "mu-") pmanager->AddProcess(new G4MuonMinusCapture(), 0, -1, -1);
} else if (particleName == "proton" || particleName == "pi+" || particleName == "pi-") {
// multiple scattering
pmanager->AddProcess(new G4hMultipleScattering, -1, 1, 1);
// ionisation
G4hIonisation* hIonisation = new G4hIonisation();
hIonisation->SetStepFunction(0.2, 50 * um);
pmanager->AddProcess(hIonisation, -1, 2, 2);
// bremmstrahlung
pmanager->AddProcess(new G4hBremsstrahlung, -1, -3, 3);
} else if (particleName == "alpha" || particleName == "deuteron" || particleName == "triton" ||
particleName == "He3") {
// multiple scattering
pmanager->AddProcess(new G4hMultipleScattering, -1, 1, 1);
// ionisation
G4ionIonisation* ionIoni = new G4ionIonisation();
ionIoni->SetStepFunction(0.1, 20 * um);
pmanager->AddProcess(ionIoni, -1, 2, 2);
} else if (particleName == "GenericIon") {
// OBJECT may be dynamically created as either a GenericIon or nucleus
// G4Nucleus exists and therefore has particle type nucleus
// genericIon:
// multiple scattering
pmanager->AddProcess(new G4hMultipleScattering, -1, 1, 1);
// ionisation
G4ionIonisation* ionIoni = new G4ionIonisation();
ionIoni->SetEmModel(new G4IonParametrisedLossModel());
ionIoni->SetStepFunction(0.1, 20 * um);
pmanager->AddProcess(ionIoni, -1, 2, 2);
}
else if ((!particle->IsShortLived()) && (charge != 0.0) && (particle->GetParticleName() != "chargedgeantino")) {
// all others charged particles except geantino
G4hMultipleScattering* aMultipleScattering = new G4hMultipleScattering();
G4hIonisation* ahadronIon = new G4hIonisation();
// multiple scattering
pmanager->AddProcess(aMultipleScattering, -1, 1, 1);
// ionisation
pmanager->AddProcess(ahadronIon, -1, 2, 2);
}
}
}
// ******** Optical Processes ********
#include "G4OpAbsorption.hh"
#include "G4OpBoundaryProcess.hh"
#include "G4OpRayleigh.hh"
#include "G4Scintillation.hh"
void GenePhysicsList::ConstructOp() {
// default scintillation process
G4Scintillation* theScintProcessDef = new G4Scintillation("Scintillation");
theScintProcessDef->DumpPhysicsTable();
theScintProcessDef->SetTrackSecondariesFirst(true);
theScintProcessDef->SetScintillationYieldFactor(1.0);
theScintProcessDef->SetScintillationExcitationRatio(0.0);
theScintProcessDef->SetVerboseLevel(OpVerblevel);
// scintillation process for alpha:
G4Scintillation* theScintProcessAlpha = new G4Scintillation("Scintillation");
theScintProcessAlpha->SetTrackSecondariesFirst(true);
theScintProcessAlpha->SetScintillationYieldFactor(1.1);
theScintProcessAlpha->SetScintillationExcitationRatio(1.0);
theScintProcessAlpha->SetVerboseLevel(OpVerblevel);
// scintillation process for heavy nuclei
G4Scintillation* theScintProcessNuc = new G4Scintillation("Scintillation");
theScintProcessNuc->SetTrackSecondariesFirst(true);
theScintProcessNuc->SetScintillationYieldFactor(0.2);
theScintProcessNuc->SetScintillationExcitationRatio(1.0);
theScintProcessNuc->SetVerboseLevel(OpVerblevel);
// optical processes
G4OpAbsorption* theAbsorptionProcess = new G4OpAbsorption();
G4OpRayleigh* theRayleighScatteringProcess = new G4OpRayleigh();
G4OpBoundaryProcess* theBoundaryProcess = new G4OpBoundaryProcess();
theAbsorptionProcess->SetVerboseLevel(OpVerblevel);
theRayleighScatteringProcess->SetVerboseLevel(OpVerblevel);
theBoundaryProcess->SetVerboseLevel(OpVerblevel);
auto particleIterator = GetParticleIterator();
particleIterator->reset();
while ((*particleIterator)()) {
G4ParticleDefinition* particle = particleIterator->value();
G4ProcessManager* pmanager = particle->GetProcessManager();
G4String particleName = particle->GetParticleName();
if (theScintProcessDef->IsApplicable(*particle)) {
if (particle->GetParticleName() == "GenericIon") {
pmanager->AddProcess(theScintProcessNuc);
pmanager->SetProcessOrderingToLast(theScintProcessNuc, idxAtRest);
pmanager->SetProcessOrderingToLast(theScintProcessNuc, idxPostStep);
} else if (particle->GetParticleName() == "alpha") {
pmanager->AddProcess(theScintProcessAlpha);
pmanager->SetProcessOrderingToLast(theScintProcessAlpha, idxAtRest);
pmanager->SetProcessOrderingToLast(theScintProcessAlpha, idxPostStep);
} else {
pmanager->AddProcess(theScintProcessDef);
pmanager->SetProcessOrderingToLast(theScintProcessDef, idxAtRest);
pmanager->SetProcessOrderingToLast(theScintProcessDef, idxPostStep);
}
}
if (particleName == "opticalphoton") {
pmanager->AddDiscreteProcess(theAbsorptionProcess);
pmanager->AddDiscreteProcess(theRayleighScatteringProcess);
pmanager->AddDiscreteProcess(theBoundaryProcess);
}
}
}
// ******** Hadronic Processes ********
// ****** Elastic ******
#include "G4ChipsElasticModel.hh"
#include "G4ElasticHadrNucleusHE.hh"
#include "G4HadronElasticProcess.hh"
// ****** Inelastic ******
#include "G4AlphaInelasticProcess.hh"
#include "G4AntiNeutronInelasticProcess.hh"
#include "G4AntiProtonInelasticProcess.hh"
#include "G4DeuteronInelasticProcess.hh"
#include "G4KaonMinusInelasticProcess.hh"
#include "G4KaonPlusInelasticProcess.hh"
#include "G4KaonZeroLInelasticProcess.hh"
#include "G4KaonZeroSInelasticProcess.hh"
#include "G4NeutronInelasticProcess.hh"
#include "G4PionMinusInelasticProcess.hh"
#include "G4PionPlusInelasticProcess.hh"
#include "G4ProtonInelasticProcess.hh"
#include "G4TritonInelasticProcess.hh"
// ****** High energy FTFP model and Bertini cascade ******
#include "G4CascadeInterface.hh"
#include "G4ExcitedStringDecay.hh"
#include "G4FTFModel.hh"
#include "G4GeneratorPrecompoundInterface.hh"
#include "G4LundStringFragmentation.hh"
#include "G4PreCompoundModel.hh"
#include "G4TheoFSGenerator.hh"
// ****** Cross sections ******
#include "G4AntiNuclElastic.hh"
#include "G4BGGNucleonInelasticXS.hh"
#include "G4BGGPionElasticXS.hh"
#include "G4ComponentAntiNuclNuclearXS.hh"
#include "G4ComponentGGNuclNuclXsc.hh"
#include "G4CrossSectionDataSetRegistry.hh"
#include "G4CrossSectionElastic.hh"
#include "G4CrossSectionInelastic.hh"
#include "G4CrossSectionPairGG.hh"
#include "G4HadronCaptureProcess.hh"
#include "G4HadronElastic.hh"
#include "G4PiNuclearCrossSection.hh"
#include "G4VCrossSectionDataSet.hh"
// ****** Neutron high-precision models: <20 MeV ******
#include "G4ParticleHPCapture.hh"
#include "G4ParticleHPCaptureData.hh"
#include "G4ParticleHPElastic.hh"
#include "G4ParticleHPElasticData.hh"
#include "G4ParticleHPInelastic.hh"
#include "G4ParticleHPInelasticData.hh"
// ****** Stopping ******
#include "G4AntiProtonAbsorptionFritiof.hh"
#include "G4KaonMinusAbsorptionBertini.hh"
#include "G4PiMinusAbsorptionBertini.hh"
void GenePhysicsList::ConstructHad() {
// Elastic models
const G4double elastic_elimitPi = 1.0 * GeV;
G4HadronElastic* elastic_lhep0 = new G4HadronElastic();
G4HadronElastic* elastic_lhep1 = new G4HadronElastic();
elastic_lhep1->SetMaxEnergy(elastic_elimitPi);
G4ChipsElasticModel* elastic_chip = new G4ChipsElasticModel();
G4ElasticHadrNucleusHE* elastic_he = new G4ElasticHadrNucleusHE();
elastic_he->SetMinEnergy(elastic_elimitPi);
// Inelastic scattering
const G4double theFTFMin0 = 0.0 * GeV;
const G4double theFTFMin1 = 4.0 * GeV;
const G4double theFTFMax = 100.0 * TeV;
const G4double theBERTMin0 = 0.0 * GeV;
const G4double theBERTMin1 = 19.0 * MeV;
const G4double theBERTMax = 5.0 * GeV;
const G4double theHPMin = 0.0 * GeV;
const G4double theHPMax = 20.0 * MeV;
G4FTFModel* theStringModel = new G4FTFModel;
G4ExcitedStringDecay* theStringDecay = new G4ExcitedStringDecay(new G4LundStringFragmentation);
theStringModel->SetFragmentationModel(theStringDecay);
G4PreCompoundModel* thePreEquilib = new G4PreCompoundModel(new G4ExcitationHandler);
G4GeneratorPrecompoundInterface* theCascade = new G4GeneratorPrecompoundInterface(thePreEquilib);
G4TheoFSGenerator* theFTFModel0 = new G4TheoFSGenerator("FTFP");
theFTFModel0->SetHighEnergyGenerator(theStringModel);
theFTFModel0->SetTransport(theCascade);
theFTFModel0->SetMinEnergy(theFTFMin0);
theFTFModel0->SetMaxEnergy(theFTFMax);
G4TheoFSGenerator* theFTFModel1 = new G4TheoFSGenerator("FTFP");
theFTFModel1->SetHighEnergyGenerator(theStringModel);
theFTFModel1->SetTransport(theCascade);
theFTFModel1->SetMinEnergy(theFTFMin1);
theFTFModel1->SetMaxEnergy(theFTFMax);
G4CascadeInterface* theBERTModel0 = new G4CascadeInterface;
theBERTModel0->SetMinEnergy(theBERTMin0);
theBERTModel0->SetMaxEnergy(theBERTMax);
G4CascadeInterface* theBERTModel1 = new G4CascadeInterface;
theBERTModel1->SetMinEnergy(theBERTMin1);
theBERTModel1->SetMaxEnergy(theBERTMax);
G4VCrossSectionDataSet* thePiData = new G4CrossSectionPairGG(new G4PiNuclearCrossSection, 91 * GeV);
G4VCrossSectionDataSet* theAntiNucleonData = new G4CrossSectionInelastic(new G4ComponentAntiNuclNuclearXS);
G4ComponentGGNuclNuclXsc* ggNuclNuclXsec = new G4ComponentGGNuclNuclXsc();
G4VCrossSectionDataSet* theGGNuclNuclData = new G4CrossSectionInelastic(ggNuclNuclXsec);
auto particleIterator = GetParticleIterator();
particleIterator->reset();
while ((*particleIterator)()) {
G4ParticleDefinition* particle = particleIterator->value();
G4ProcessManager* pmanager = particle->GetProcessManager();
G4String particleName = particle->GetParticleName();
if (particleName == "pi+") {
// Elastic scattering
G4HadronElasticProcess* theElasticProcess = new G4HadronElasticProcess;
theElasticProcess->AddDataSet(new G4BGGPionElasticXS(particle));
theElasticProcess->RegisterMe(elastic_lhep1);
theElasticProcess->RegisterMe(elastic_he);
pmanager->AddDiscreteProcess(theElasticProcess);
// Inelastic scattering
G4PionPlusInelasticProcess* theInelasticProcess = new G4PionPlusInelasticProcess("inelastic");
theInelasticProcess->AddDataSet(thePiData);
theInelasticProcess->RegisterMe(theFTFModel1);
theInelasticProcess->RegisterMe(theBERTModel0);
pmanager->AddDiscreteProcess(theInelasticProcess);
}
else if (particleName == "pi-") {
// Elastic scattering
G4HadronElasticProcess* theElasticProcess = new G4HadronElasticProcess;
theElasticProcess->AddDataSet(new G4BGGPionElasticXS(particle));
theElasticProcess->RegisterMe(elastic_lhep1);
theElasticProcess->RegisterMe(elastic_he);
pmanager->AddDiscreteProcess(theElasticProcess);
// Inelastic scattering
G4PionMinusInelasticProcess* theInelasticProcess = new G4PionMinusInelasticProcess("inelastic");
theInelasticProcess->AddDataSet(thePiData);
theInelasticProcess->RegisterMe(theFTFModel1);
theInelasticProcess->RegisterMe(theBERTModel0);
pmanager->AddDiscreteProcess(theInelasticProcess);
// Absorption
pmanager->AddRestProcess(new G4PiMinusAbsorptionBertini, ordDefault);
}
else if (particleName == "kaon+") {
// Elastic scattering
G4HadronElasticProcess* theElasticProcess = new G4HadronElasticProcess;
theElasticProcess->RegisterMe(elastic_lhep0);
pmanager->AddDiscreteProcess(theElasticProcess);
// Inelastic scattering
G4KaonPlusInelasticProcess* theInelasticProcess = new G4KaonPlusInelasticProcess("inelastic");
theInelasticProcess->AddDataSet(G4CrossSectionDataSetRegistry::Instance()->GetCrossSectionDataSet(
G4ChipsKaonPlusInelasticXS::Default_Name()));
theInelasticProcess->RegisterMe(theFTFModel1);
theInelasticProcess->RegisterMe(theBERTModel0);
pmanager->AddDiscreteProcess(theInelasticProcess);
}
else if (particleName == "kaon0S") {
// Elastic scattering
G4HadronElasticProcess* theElasticProcess = new G4HadronElasticProcess;
theElasticProcess->RegisterMe(elastic_lhep0);
pmanager->AddDiscreteProcess(theElasticProcess);
// Inelastic scattering
G4KaonZeroSInelasticProcess* theInelasticProcess = new G4KaonZeroSInelasticProcess("inelastic");
theInelasticProcess->AddDataSet(G4CrossSectionDataSetRegistry::Instance()->GetCrossSectionDataSet(
G4ChipsKaonZeroInelasticXS::Default_Name()));
theInelasticProcess->RegisterMe(theFTFModel1);
theInelasticProcess->RegisterMe(theBERTModel0);
pmanager->AddDiscreteProcess(theInelasticProcess);
}
else if (particleName == "kaon0L") {
// Elastic scattering
G4HadronElasticProcess* theElasticProcess = new G4HadronElasticProcess;
theElasticProcess->RegisterMe(elastic_lhep0);
pmanager->AddDiscreteProcess(theElasticProcess);
// Inelastic scattering
G4KaonZeroLInelasticProcess* theInelasticProcess = new G4KaonZeroLInelasticProcess("inelastic");
theInelasticProcess->AddDataSet(G4CrossSectionDataSetRegistry::Instance()->GetCrossSectionDataSet(
G4ChipsKaonZeroInelasticXS::Default_Name()));
theInelasticProcess->RegisterMe(theFTFModel1);
theInelasticProcess->RegisterMe(theBERTModel0);
pmanager->AddDiscreteProcess(theInelasticProcess);
}
else if (particleName == "kaon-") {
// Elastic scattering
G4HadronElasticProcess* theElasticProcess = new G4HadronElasticProcess;
theElasticProcess->RegisterMe(elastic_lhep0);
pmanager->AddDiscreteProcess(theElasticProcess);
// Inelastic scattering
G4KaonMinusInelasticProcess* theInelasticProcess = new G4KaonMinusInelasticProcess("inelastic");
theInelasticProcess->AddDataSet(G4CrossSectionDataSetRegistry::Instance()->GetCrossSectionDataSet(
G4ChipsKaonMinusInelasticXS::Default_Name()));
theInelasticProcess->RegisterMe(theFTFModel1);
theInelasticProcess->RegisterMe(theBERTModel0);
pmanager->AddDiscreteProcess(theInelasticProcess);
pmanager->AddRestProcess(new G4KaonMinusAbsorptionBertini, ordDefault);
}
else if (particleName == "proton") {
// Elastic scattering
G4HadronElasticProcess* theElasticProcess = new G4HadronElasticProcess;
theElasticProcess->AddDataSet(G4CrossSectionDataSetRegistry::Instance()->GetCrossSectionDataSet(
G4ChipsProtonElasticXS::Default_Name()));
theElasticProcess->RegisterMe(elastic_chip);
pmanager->AddDiscreteProcess(theElasticProcess);
// Inelastic scattering
G4ProtonInelasticProcess* theInelasticProcess = new G4ProtonInelasticProcess("inelastic");
theInelasticProcess->AddDataSet(new G4BGGNucleonInelasticXS(G4Proton::Proton()));
theInelasticProcess->RegisterMe(theFTFModel1);
theInelasticProcess->RegisterMe(theBERTModel0);
pmanager->AddDiscreteProcess(theInelasticProcess);
} else if (particleName == "anti_proton") {
// Elastic scattering
const G4double elastic_elimitAntiNuc = 100.0 * MeV;
G4AntiNuclElastic* elastic_anuc = new G4AntiNuclElastic();
elastic_anuc->SetMinEnergy(elastic_elimitAntiNuc);
G4CrossSectionElastic* elastic_anucxs = new G4CrossSectionElastic(elastic_anuc->GetComponentCrossSection());
G4HadronElastic* elastic_lhep2 = new G4HadronElastic();
elastic_lhep2->SetMaxEnergy(elastic_elimitAntiNuc);
G4HadronElasticProcess* theElasticProcess = new G4HadronElasticProcess;
theElasticProcess->AddDataSet(elastic_anucxs);
theElasticProcess->RegisterMe(elastic_lhep2);
theElasticProcess->RegisterMe(elastic_anuc);
pmanager->AddDiscreteProcess(theElasticProcess);
// Inelastic scattering
G4AntiProtonInelasticProcess* theInelasticProcess = new G4AntiProtonInelasticProcess("inelastic");
theInelasticProcess->AddDataSet(theAntiNucleonData);
theInelasticProcess->RegisterMe(theFTFModel0);
pmanager->AddDiscreteProcess(theInelasticProcess);
// Absorption
pmanager->AddRestProcess(new G4AntiProtonAbsorptionFritiof, ordDefault);
}
else if (particleName == "neutron") {
// elastic scattering
G4HadronElasticProcess* theElasticProcess = new G4HadronElasticProcess;
theElasticProcess->AddDataSet(G4CrossSectionDataSetRegistry::Instance()->GetCrossSectionDataSet(
G4ChipsNeutronElasticXS::Default_Name()));
G4HadronElastic* elastic_neutronChipsModel = new G4ChipsElasticModel();
elastic_neutronChipsModel->SetMinEnergy(19.0 * MeV);
theElasticProcess->RegisterMe(elastic_neutronChipsModel);
G4ParticleHPElastic* theElasticNeutronHP = new G4ParticleHPElastic;
theElasticNeutronHP->SetMinEnergy(theHPMin);
theElasticNeutronHP->SetMaxEnergy(theHPMax);
theElasticProcess->RegisterMe(theElasticNeutronHP);
theElasticProcess->AddDataSet(new G4ParticleHPElasticData);
pmanager->AddDiscreteProcess(theElasticProcess);
// inelastic scattering
G4NeutronInelasticProcess* theInelasticProcess = new G4NeutronInelasticProcess("inelastic");
theInelasticProcess->AddDataSet(new G4BGGNucleonInelasticXS(G4Neutron::Neutron()));
theInelasticProcess->RegisterMe(theFTFModel1);
theInelasticProcess->RegisterMe(theBERTModel1);
G4ParticleHPInelastic* theNeutronInelasticHPModel = new G4ParticleHPInelastic;
theNeutronInelasticHPModel->SetMinEnergy(theHPMin);
theNeutronInelasticHPModel->SetMaxEnergy(theHPMax);
theInelasticProcess->RegisterMe(theNeutronInelasticHPModel);
theInelasticProcess->AddDataSet(new G4ParticleHPInelasticData);
pmanager->AddDiscreteProcess(theInelasticProcess);
// capture
G4HadronCaptureProcess* theCaptureProcess = new G4HadronCaptureProcess;
G4ParticleHPCapture* theLENeutronCaptureModel = new G4ParticleHPCapture;
theLENeutronCaptureModel->SetMinEnergy(theHPMin);
theLENeutronCaptureModel->SetMaxEnergy(theHPMax);
theCaptureProcess->RegisterMe(theLENeutronCaptureModel);
theCaptureProcess->AddDataSet(new G4ParticleHPCaptureData);
pmanager->AddDiscreteProcess(theCaptureProcess);
} else if (particleName == "anti_neutron") {
// Elastic scattering
G4HadronElasticProcess* theElasticProcess = new G4HadronElasticProcess;
theElasticProcess->RegisterMe(elastic_lhep0);
pmanager->AddDiscreteProcess(theElasticProcess);
// Inelastic scattering (include annihilation on-fly)
G4AntiNeutronInelasticProcess* theInelasticProcess = new G4AntiNeutronInelasticProcess("inelastic");
theInelasticProcess->AddDataSet(theAntiNucleonData);
theInelasticProcess->RegisterMe(theFTFModel0);
pmanager->AddDiscreteProcess(theInelasticProcess);
}
else if (particleName == "deuteron") {
// Elastic scattering
G4HadronElasticProcess* theElasticProcess = new G4HadronElasticProcess;
theElasticProcess->RegisterMe(elastic_lhep0);
pmanager->AddDiscreteProcess(theElasticProcess);
// Inelastic scattering
G4DeuteronInelasticProcess* theInelasticProcess = new G4DeuteronInelasticProcess("inelastic");
theInelasticProcess->AddDataSet(theGGNuclNuclData);
theInelasticProcess->RegisterMe(theFTFModel1);
theInelasticProcess->RegisterMe(theBERTModel0);
pmanager->AddDiscreteProcess(theInelasticProcess);
}
else if (particleName == "triton") {
// Elastic scattering
G4HadronElasticProcess* theElasticProcess = new G4HadronElasticProcess;
theElasticProcess->RegisterMe(elastic_lhep0);
pmanager->AddDiscreteProcess(theElasticProcess);
// Inelastic scattering
G4TritonInelasticProcess* theInelasticProcess = new G4TritonInelasticProcess("inelastic");
theInelasticProcess->AddDataSet(theGGNuclNuclData);
theInelasticProcess->RegisterMe(theFTFModel1);
theInelasticProcess->RegisterMe(theBERTModel0);
pmanager->AddDiscreteProcess(theInelasticProcess);
} else if (particleName == "alpha") {
// Elastic scattering
G4HadronElasticProcess* theElasticProcess = new G4HadronElasticProcess;
theElasticProcess->RegisterMe(elastic_lhep0);
pmanager->AddDiscreteProcess(theElasticProcess);
// Inelastic scattering
G4AlphaInelasticProcess* theInelasticProcess = new G4AlphaInelasticProcess("inelastic");
theInelasticProcess->AddDataSet(theGGNuclNuclData);
theInelasticProcess->RegisterMe(theFTFModel1);
theInelasticProcess->RegisterMe(theBERTModel0);
pmanager->AddDiscreteProcess(theInelasticProcess);
}
}
}
// ******** Decays ********
#include "G4Decay.hh"
#include "G4IonTable.hh"
#include "G4Ions.hh"
#include "G4RadioactiveDecay.hh"
void GenePhysicsList::ConstructGeneral() {
// Add Decay Process
G4Decay* theDecayProcess = new G4Decay();
auto particleIterator = GetParticleIterator();
particleIterator->reset();
while ((*particleIterator)()) {
G4ParticleDefinition* particle = particleIterator->value();
G4ProcessManager* pmanager = particle->GetProcessManager();
if (theDecayProcess->IsApplicable(*particle) && !particle->IsShortLived()) {
pmanager->AddProcess(theDecayProcess);
// set ordering for PostStepDoIt and AtRestDoIt
pmanager->SetProcessOrdering(theDecayProcess, idxPostStep);
pmanager->SetProcessOrdering(theDecayProcess, idxAtRest);
}
}
// Declare radioactive decay to the GenericIon in the IonTable.
const G4IonTable* theIonTable = G4ParticleTable::GetParticleTable()->GetIonTable();
G4RadioactiveDecay* theRadioactiveDecay = new G4RadioactiveDecay();
for (G4int i = 0; i < theIonTable->Entries(); i++) {
G4String particleName = theIonTable->GetParticle(i)->GetParticleName();
G4String particleType = theIonTable->GetParticle(i)->GetParticleType();
if (particleName == "GenericIon") {
G4ProcessManager* pmanager = theIonTable->GetParticle(i)->GetProcessManager();
pmanager->SetVerboseLevel(verboseLevel);
pmanager->AddProcess(theRadioactiveDecay);
pmanager->SetProcessOrdering(theRadioactiveDecay, idxPostStep);
pmanager->SetProcessOrdering(theRadioactiveDecay, idxAtRest);
}
}
}
// ******** Cuts ********
void GenePhysicsList::SetCuts() {
if (verboseLevel > 1) G4cout << "GenePhysicsList::SetCuts:";
if (verboseLevel > 0) {
G4cout << "GenePhysicsList::SetCuts:";
G4cout << "CutLength : " << G4BestUnit(defaultCutValue, "Length") << G4endl;
}
// special for low energy physics
G4double lowlimit = 250 * eV;
G4ProductionCutsTable::GetProductionCutsTable()->SetEnergyRange(lowlimit, 100. * GeV);
// set cut values for gamma at first and for e- second and next for e+,
// because some processes for e+/e- need cut values for gamma
SetCutValue(cutForGamma, "gamma");
SetCutValue(cutForElectron, "e-");
SetCutValue(cutForPositron, "e+");
if (verboseLevel > 0) DumpCutValuesTable();
}

View File

@ -11,7 +11,7 @@
#include "GenePrimaryGeneratorAction.hh"
#include "GenePrimaryGeneratorActionMessenger.hh"
#include "Randomize.hh"
#include <globals.hh>
#include "globals.hh"
#include "fstream"