This repository has been archived on 2024-11-23. You can view files and clone it, but cannot push or open issues or pull requests.
GBM-data-tools/plot/lib.py
2022-07-15 07:36:07 +00:00

888 lines
29 KiB
Python

# lib.py: Module containing various plotting functions
#
# Authors: William Cleveland (USRA),
# Adam Goldstein (USRA) and
# Daniel Kocevski (NASA)
#
# Portions of the code are Copyright 2020 William Cleveland and
# Adam Goldstein, Universities Space Research Association
# All rights reserved.
#
# Written for the Fermi Gamma-ray Burst Monitor (Fermi-GBM)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
#
import matplotlib.pyplot as plt
from astropy.coordinates import SkyCoord
from matplotlib.colors import colorConverter
from matplotlib.patches import Polygon
from .globals import *
from .lal_post_subs import *
from ..coords import calc_mcilwain_l, saa_boundary, radec_to_spacecraft
# ---------- Lightcurve and Spectra ----------#
def histo(bins, ax, color='C0', edges_to_zero=False, **kwargs):
"""Plot a rate histogram either lightcurves or count spectra
Args:
bins (:class:`gbm.data.primitives.TimeBins` or \
:class:`gbm.data.primitives.EnergyBins`)
The lightcurve or count spectrum histograms
ax (:class:`matplotlib.axes`): The axis on which to plot
color (str, optional): The color of the histogram. Default is 'C0'
edges_to_zero (bool, optional):
If True, then the farthest edges of the histogram will drop to zero.
Default is True.
**kwargs: Other plotting options
Returns:
list: The reference to the plot objects
"""
bin_segs = bins.contiguous_bins()
refs = []
for seg in bin_segs:
edges = np.concatenate(
([seg.lo_edges[0]], seg.lo_edges, [seg.hi_edges[-1]]))
if edges_to_zero:
rates = np.concatenate(([0.0], seg.rates, [0.0]))
else:
rates = np.concatenate(
([seg.rates[0]], seg.rates, [seg.rates[-1]]))
p = ax.step(edges, rates, where='post', color=color, **kwargs)
refs.append(p)
return refs
def histo_errorbars(bins, ax, color='C0', **kwargs):
"""Plot errorbars for lightcurves or count spectra
Args:
bins (:class:`gbm.data.primitives.TimeBins` or \
:class:`gbm.data.primitives.EnergyBins`)
The lightcurve or count spectrum histograms
ax (:class:`matplotlib.axes`): The axis on which to plot
color (str, optional): The color of the errorbars. Default is 'C0'
**kwargs: Other plotting options
Returns:
list: The reference to the plot objects
"""
bin_segs = bins.contiguous_bins()
refs = []
for seg in bin_segs:
p = ax.errorbar(seg.centroids, seg.rates, seg.rate_uncertainty,
capsize=0, fmt='none', color=color, **kwargs)
refs.append(p)
return refs
def histo_filled(bins, ax, color=DATA_SELECTED_COLOR,
fill_alpha=DATA_SELECTED_ALPHA, **kwargs):
"""Plot a filled histogram
Args:
bins (:class:`gbm.data.primitives.TimeBins` or \
:class:`gbm.data.primitives.EnergyBins`)
The lightcurve or count spectrum histograms
ax (:class:`matplotlib.axes`): The axis on which to plot
color (str, optional): The color of the filled histogram
fill_alpha (float, optional): The alpha of the fill
**kwargs: Other plotting options
Returns:
list: The reference to the plot objects
"""
h = histo(bins, ax, color=color, zorder=3, **kwargs)
zeros = np.zeros(bins.size + 1)
rates = np.append(bins.rates, bins.rates[-1])
edges = np.append(bins.lo_edges, bins.hi_edges[-1])
b1 = ax.plot((edges[0], edges[0]), (zeros[0], rates[0]), color=color,
zorder=2)
b2 = ax.plot((edges[-1], edges[-1]), (zeros[-1], rates[-1]), color=color,
zorder=2)
f = ax.fill_between(edges, zeros, rates, color=color, step='post',
alpha=fill_alpha, zorder=4, **kwargs)
refs = [h, b1, b2, f]
return refs
def selection_line(xpos, ax, **kwargs):
"""Plot a selection line
Args:
xpos (float): The position of the selection line
ax (:class:`matplotlib.axes`): The axis on which to plot
**kwargs: Other plotting options
Returns:
list: The reference to the plot objects
"""
ylim = ax.get_ylim()
ref = ax.plot([xpos, xpos], ylim, **kwargs)
return ref
def selections(bounds, ax, **kwargs):
"""Plot selection bounds
Args:
bounds (list of tuples): List of selection bounds
ax (:class:`matplotlib.axes`): The axis on which to plot
**kwargs: Other plotting options
Returns:
tuple: The reference to the lower and upper selection
"""
refs1 = []
refs2 = []
for bound in bounds:
p = selection_line(bound[0], ax, **kwargs)
refs1.append(p[0])
p = selection_line(bound[1], ax, **kwargs)
refs2.append(p[0])
return (refs1, refs2)
def errorband(x, y_upper, y_lower, ax, **kwargs):
"""Plot an error band
Args:
x (np.array): The x values
y_upper (np.array): The upper y values of the error band
y_lower (np.array): The lower y values of the error band
ax (:class:`matplotlib.axes`): The axis on which to plot
**kwargs: Other plotting options
Returns:
list: The reference to the lower and upper selection
"""
refs = ax.fill_between(x, y_upper.squeeze(), y_lower.squeeze(), **kwargs)
return refs
def lightcurve_background(backrates, ax, cent_color=None, err_color=None,
cent_alpha=None, err_alpha=None, **kwargs):
"""Plot a lightcurve background model with an error band
Args:
backrates (:class:`~gbm.background.BackgroundRates`):
The background rates object integrated over energy. If there is more
than one remaining energy channel, the background will be integrated
over the remaining energy channels.
ax (:class:`matplotlib.axes`): The axis on which to plot
cent_color (str): Color of the centroid line
err_color (str): Color of the errorband
cent_alpha (float): Alpha of the centroid line
err_alpha (fl): Alpha of the errorband
**kwargs: Other plotting options
Returns:
list: The reference to the lower and upper selection
"""
if backrates.numchans > 1:
backrates = backrates.integrate_energy()
times = backrates.time_centroids
rates = backrates.rates
uncert = backrates.rate_uncertainty
p2 = errorband(times, rates + uncert, rates - uncert, ax, alpha=err_alpha,
color=err_color, linestyle='-', **kwargs)
p1 = ax.plot(times, rates, color=cent_color, alpha=cent_alpha,
**kwargs)
refs = [p1, p2]
return refs
def spectrum_background(backspec, ax, cent_color=None, err_color=None,
cent_alpha=None, err_alpha=None, **kwargs):
"""Plot a count spectrum background model with an error band
Args:
backspec (:class:`~gbm.background.BackgroundSpectrum`):
The background rates object integrated over energy. If there is more
than one remaining energy channel, the background will be integrated
over the remaining energy channels.
ax (:class:`matplotlib.axes`): The axis on which to plot
cent_color (str): Color of the centroid line
err_color (str): Color of the errorband
cent_alpha (float): Alpha of the centroid line
err_alpha (fl): Alpha of the errorband
**kwargs: Other plotting options
Returns:
list: The reference to the lower and upper selection
"""
rates = backspec.rates / backspec.widths
uncert = backspec.rate_uncertainty / backspec.widths
edges = np.append(backspec.lo_edges, backspec.hi_edges[-1])
# plot the centroid of the model
p1 = ax.step(edges, np.append(rates, rates[-1]), where='post',
color=cent_color, alpha=cent_alpha, zorder=1, **kwargs)
# construct the stepped errorband to fill between
energies = np.array(
(backspec.lo_edges, backspec.hi_edges)).T.flatten() # .tolist()
upper = np.array((rates + uncert, rates + uncert)).T.flatten() # .tolist()
lower = np.array((rates - uncert, rates - uncert)).T.flatten() # .tolist()
p2 = errorband(energies, upper, lower, ax, color=err_color,
alpha=err_alpha,
linestyle='-', **kwargs)
refs = [p1, p2]
return refs
# ---------- DRM ----------#
def response_matrix(phot_energies, chan_energies, matrix, ax, cmap='Greens',
num_contours=100, norm=None, **kwargs):
"""Make a filled contour plot of a response matrix
Parameters:
-----------
phot_energies: np.array
The incident photon energy bin centroids
chan_energies: np.array
The recorded energy channel centroids
matrix: np.array
The effective area matrix corresponding to the photon bin and
energy channels
ax: matplotlib.axes
The axis on which to plot
cmap: str, optional
The color map to use. Default is 'Greens'
num_contours: int, optional
The number of contours to draw. These will be equally spaced in
log-space. Default is 100
norm: matplotlib.colors.Normalize or similar, optional
The normalization used to scale the colormapping to the heatmap values.
This can be initialized by Normalize, LogNorm, SymLogNorm, PowerNorm,
or some custom normalization.
**kwargs: optional
Other keyword arguments to be passed to matplotlib.pyplot.contourf
Returns:
-----------
image: matplotlib.collections.QuadMesh
The reference to the plot object
"""
mask = (matrix > 0.0)
levels = np.logspace(np.log10(matrix[mask].min()),
np.log10(matrix.max()), num_contours)
image = ax.contourf(phot_energies, chan_energies, matrix, levels=levels,
cmap=cmap, norm=norm)
return image
def effective_area(bins, ax, color='C0', orientation='vertical', **kwargs):
"""Plot a histogram of the effective area of an instrument response
Parameters:
-----------
bins: Bins
The histogram of effective area
ax: matplotlib.axes
The axis on which to plot
**kwargs: optional
Other plotting options
Returns:
-----------
refs: list
The reference to the plot objects
"""
bin_segs = bins.contiguous_bins()
refs = []
for seg in bin_segs:
edges = np.concatenate(
([seg.lo_edges[0]], seg.lo_edges, [seg.lo_edges[-1]]))
counts = np.concatenate(([0.0], seg.counts, [0.0]))
if orientation == 'horizontal':
p = ax.step(counts, edges, where='post', color=color, **kwargs)
else:
p = ax.step(edges, counts, where='post', color=color, **kwargs)
refs.append(p)
return refs
# ---------- Earth and Orbital ----------#
def saa_polygon(m, color='darkred', alpha=0.4, **kwargs):
"""Plot the SAA polygon on Basemap
Parameters:
-----------
m: Basemap
The basemap references
color: str, optional
The color of the polygon
alpha: float, optional
The alpha opacity of the interior of the polygon
kwargs: optional
Other plotting keywordss
Returns:
-----------
poly: Polygon
The SAA polygon object
"""
# Define the SAA boundaries
lat_saa, lon_saa = saa_boundary()
edge = colorConverter.to_rgba(color, alpha=1.0)
face = colorConverter.to_rgba(color, alpha=alpha)
# plot the polygon
x, y = m(lon_saa, lat_saa)
xy = list(zip(x, y))
poly = Polygon(xy, edgecolor=edge, facecolor=face, **kwargs)
return poly
def mcilwain_map(lat_range, lon_range, m, ax, saa_mask=False, color=None,
alpha=0.5, **kwargs):
"""Plot the McIlwain L heatmap on a Basemap
Parameters:
-----------
lat_range: (float, float)
The latitude range
lon_range: (float, float)
The longitude range
m: Basemap
The basemap references
ax: matplotlib.axes
The plot axes references
saa_mask: bool, optional
If True, mask out the SAA from the heatmap. Default is False.
color: str, optional
The color of the heatmap
alpha: float, optional
The alpha opacity of the heatmap
kwargs: optional
Other plotting keywords
Returns:
-----------
image: QuadContourSet
The heatmap plot object
"""
# do create an array on the earth
lat_array = np.linspace(*lat_range, 108)
lon_array = np.linspace(*lon_range, 720)
LAT, LON = np.meshgrid(lat_array, lon_array)
# convert to projection coordinates
mLON, mLAT = m(LON, LAT)
# mcilwain l over the grid
mcl = calc_mcilwain_l(LAT, LON)
# if we want to mask out the SAA
if saa_mask:
saa_path = saa_polygon(m).get_path()
mask = saa_path.contains_points(
np.array((mLON.ravel(), mLAT.ravel())).T)
mcl[mask.reshape(mcl.shape)] = 0.0
# do the plot
levels = [0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7]
image = ax.contourf(mLON, mLAT, mcl, levels=levels, alpha=alpha, **kwargs)
return image
def earth_line(lat, lon, m, color='black', alpha=0.4, **kwargs):
"""Plot a line on the Earth (e.g. orbit)
Parameters:
-----------
lat: np.array
Array of latitudes
lon: np.array
Array of longitudes
m: Basemap
The basemap references
color: str, optional
The color of the lines
alpha: float, optional
The alpha opacity of line
kwargs: optional
Other plotting keywords
Returns:
-----------
refs: list
The list of line plot object references
"""
lon[(lon > 180.0)] -= 360.0
path = np.vstack((lon, lat))
isplit = np.nonzero(np.abs(np.diff(path[0])) > 5.0)[0]
segments = np.split(path, isplit + 1, axis=1)
refs = []
for segment in segments:
x, y = m(segment[0], segment[1])
refs.append(m.plot(x, y, color=color, alpha=alpha, **kwargs))
return refs
def earth_points(lat, lon, m, color='black', alpha=1.0, **kwargs):
"""Plot a point or points on the Earth
Parameters:
-----------
lat: np.array
Array of latitudes
lon: np.array
Array of longitudes
m: Basemap
The basemap references
color: str, optional
The color of the lines
alpha: float, optional
The alpha opacity of line
kwargs: optional
Other plotting keywords
Returns:
-----------
ref:
The scatter plot object reference
"""
lon[(lon > 180.0)] -= 360.0
x, y = m(lon, lat)
if 's' not in kwargs.keys():
kwargs['s'] = 1000
ref = m.scatter(x, y, color=color, alpha=alpha, **kwargs)
return [ref]
# ---------- Sky and Fermi Inertial Coordinates ----------#
def sky_point(x, y, ax, flipped=True, fermi=False, **kwargs):
"""Plot a point on the sky defined by the RA and Dec
Inputs:
-----------
x: float
The azimuthal coordinate (RA or Fermi azimuth), in degrees
y: float
The polar coordinate (Dec or Fermi zenith), in degrees
ax: matplotlib.axes
Plot axes object
flipped: bool, optional
If True, the azimuthal axis is flipped, following equatorial convention
fermi: bool, optional
If True, plot in Fermi spacecraft coordinates, else plot in equatorial.
Default is False.
**kwargs: optional
Other plotting options
Returns:
----------
point: matplotlib.collections.PathCollection
The plot object
"""
theta = np.array(np.deg2rad(y))
phi = np.array(np.deg2rad(x - 180.0))
if fermi:
flipped = False
theta = np.pi / 2.0 - theta
phi -= np.pi
phi[phi < -np.pi] += 2 * np.pi
if flipped:
phi = -phi
point = ax.scatter(phi, theta, **kwargs)
return point
def sky_line(x, y, ax, flipped=True, fermi=False, **kwargs):
"""Plot a line on a sky map, wrapping at the meridian
Inputs:
-----------
x: np.array
The azimuthal coordinates (RA or Fermi azimuth), in degrees
y: np.array
The polar coordinates (Dec or Fermi zenith), in degrees
ax: matplotlib.axes
Plot axes object
flipped: bool, optional
If True, the azimuthal axis is flipped, following equatorial convention
fermi: bool, optional
If True, plot in Fermi spacecraft coordinates, else plot in equatorial.
Default is False.
**kwargs: optional
Other plotting options
"""
theta = np.deg2rad(y)
phi = np.deg2rad(x - 180.0)
if fermi:
flipped = False
theta = np.pi / 2.0 - theta
phi -= np.pi
phi[phi < -np.pi] += 2 * np.pi
if flipped:
phi = -phi
seg = np.vstack((phi, theta))
# here is where we split the segments at the meridian
isplit = np.nonzero(np.abs(np.diff(seg[0])) > np.pi / 16.0)[0]
subsegs = np.split(seg, isplit + 1, axis=1)
# plot each path segment
segrefs = []
for seg in subsegs:
ref = ax.plot(seg[0], seg[1], **kwargs)
segrefs.append(ref)
return segrefs
def sky_circle(center_x, center_y, radius, ax, flipped=True, fermi=False,
face_color=None, face_alpha=None, edge_color=None,
edge_alpha=None, **kwargs):
"""Plot a circle on the sky
Inputs:
-----------
center_x: float
The azimuthal center (RA or Fermi azimuth), in degrees
center_y: float
The polar center (Dec or Fermi zenith), in degrees
radius: float
The ROI radius in degrees
color: str
The color of the ROI
ax: matplotlib.axes
Plot axes object
flipped: bool, optional
If True, the azimuthal axis is flipped, following equatorial convention
fermi: bool, optional
If True, plot in Fermi spacecraft coordinates, else plot in equatorial.
Default is False.
face_color: str, optional
The color of the circle fill
face_alpha: float, optional
The alpha of the circle fill
edge_color: str, optional
The color of the circle edge
edge_alpha: float, optional
The alpha of the circle edge
**kwargs: optional
Other plotting options
Returns:
-----------
patches: list of matplotlib.patches.Polygon
The circle polygons
"""
try:
import mpl_toolkits.basemap
except:
raise ImportError('Cannot execute sky_circle due to missing Basemap.')
theta = np.deg2rad(90.0 - center_y)
phi = np.deg2rad(center_x)
if fermi:
flipped = False
theta = np.pi / 2.0 - theta
phi -= np.pi
if phi < -np.pi:
phi += 2 * np.pi
rad = np.deg2rad(radius)
# Call Leo's lalinference plotting helper functions
# The native matplotlib functions don't cut and display the circle polygon
# correctly on map projections
roi = make_circle_poly(rad, theta, phi, 100)
roi = cut_prime_meridian(roi)
# plot each polygon section
edge = colorConverter.to_rgba(edge_color, alpha=edge_alpha)
face = colorConverter.to_rgba(face_color, alpha=face_alpha)
patches = []
for section in roi:
section[:, 0] -= np.pi
if flipped:
section[:, 0] *= -1.0
patch = ax.add_patch(
plt.Polygon(section, facecolor=face, edgecolor=edge, \
**kwargs))
patches.append(patch)
return patches
def sky_annulus(center_x, center_y, radius, width, ax, color='black',
alpha=0.3,
fermi=False, flipped=True, **kwargs):
"""Plot an annulus on the sky defined by its center, radius, and width
Inputs:
-----------
center_x: float
The azimuthal center (RA or Fermi azimuth), in degrees
center_y: float
The polar center (Dec or Fermi zenith), in degrees
radius: float
The radius in degrees, defined as the angular distance from the center
to the middle of the width of the annulus band
width: float
The width of the annulus in degrees
ax: matplotlib.axes
Plot axes object
color: string, optional
The color of the annulus. Default is black.
alpha: float, optional
The opacity of the annulus. Default is 0.3
fermi: bool, optional
If True, plot in Fermi spacecraft coordinates, else plot in equatorial.
Default is False.
flipped: bool, optional
If True, the azimuthal axis is flipped, following equatorial convention
**kwargs: optional
Other plotting options
"""
try:
import mpl_toolkits.basemap
except:
raise ImportError('Cannot execute sky_annulus due to missing Basemap.')
edge = colorConverter.to_rgba(color, alpha=1.0)
face = colorConverter.to_rgba(color, alpha=alpha)
inner_radius = np.deg2rad(radius - width / 2.0)
outer_radius = np.deg2rad(radius + width / 2.0)
center_theta = np.deg2rad(90.0 - center_y)
center_phi = np.deg2rad(center_x)
if fermi:
flipped = False
center_theta = np.pi / 2.0 - center_theta
center_phi = np.deg2rad(center_x + 180.0)
# get the plot points for the inner and outer circles
inner = make_circle_poly(inner_radius, center_theta, center_phi, 100)
inner = cut_prime_meridian(inner)
outer = make_circle_poly(outer_radius, center_theta, center_phi, 100)
outer = cut_prime_meridian(outer)
x1 = []
y1 = []
x2 = []
y2 = []
polys = []
# plot the inner circle
for section in inner:
section[:, 0] -= np.pi
if flipped:
section[:, 0] *= -1.0
polys.append(plt.Polygon(section, ec=edge, fill=False, **kwargs))
ax.add_patch(polys[-1])
x1.extend(section[:, 0])
y1.extend(section[:, 1])
# plot the outer circle
for section in outer:
section[:, 0] -= np.pi
if flipped:
section[:, 0] *= -1.0
polys.append(plt.Polygon(section, ec=edge, fill=False, **kwargs))
ax.add_patch(polys[-1])
x2.extend(section[:, 0])
y2.extend(section[:, 1])
# organize and plot the fill between the circles
# organize and plot the fill between the circles
x1.append(x1[0])
y1.append(y1[0])
x2.append(x2[0])
y2.append(y2[0])
x2 = x2[::-1]
y2 = y2[::-1]
xs = np.concatenate((x1, x2))
ys = np.concatenate((y1, y2))
f = ax.fill(np.ravel(xs), np.ravel(ys), facecolor=face, zorder=1000)
refs = polys
refs.append(f)
return refs
def sky_polygon(x, y, ax, face_color=None, edge_color=None, edge_alpha=1.0,
face_alpha=0.3, flipped=True, fermi=False, **kwargs):
"""Plot single polygon on a sky map, wrapping at the meridian
Inputs:
-----------
paths: matplotlib.path.Path
Object containing the contour path
ax: matplotlib.axes
Plot axes object
face_color: str, optional
The color of the polygon fill
face_alpha: float, optional
The alpha of the polygon fill
edge_color: str, optional
The color of the polygon edge
edge_alpha: float, optional
The alpha of the polygon edge
fermi: bool, optional
If True, plot in Fermi spacecraft coordinates, else plot in equatorial.
Default is False.
flipped: bool, optional
If True, the azimuthal axis is flipped, following equatorial convention
**kwargs: optional
Other plotting options
"""
line = sky_line(x, y, ax, color=edge_color, alpha=edge_alpha,
flipped=flipped,
fermi=fermi, **kwargs)
refs = line
theta = np.deg2rad(y)
phi = np.deg2rad(x - 180.0)
if fermi:
flipped = False
theta = np.pi / 2.0 - theta
phi -= np.pi
phi[phi < -np.pi] += 2 * np.pi
if flipped:
phi = -phi
# this is needed to determine when contour spans the full ra range
if (np.min(phi) == -np.pi) and (np.max(phi) == np.pi):
if np.mean(theta) > 0.0: # fill in positive dec
theta = np.insert(theta, 0, np.pi / 2.0)
theta = np.append(theta, np.pi / 2.0)
phi = np.insert(phi, 0, -np.pi)
phi = np.append(phi, np.pi)
else: # fill in negative dec
theta = np.insert(theta, 0, -np.pi / 2.0)
theta = np.append(theta, -np.pi / 2.0)
phi = np.insert(phi, 0, np.pi)
phi = np.append(phi, -np.pi)
f = ax.fill(phi, theta, color=face_color, alpha=face_alpha, **kwargs)
refs.append(f)
return refs
def galactic_plane(ax, flipped=True, fermi_quat=None, outer_color='dimgray',
inner_color='black', line_alpha=0.5, center_alpha=0.75,
**kwargs):
"""Plot the galactic plane on the sky
Inputs:
-----------
ax: matplotlib.axes
Plot axes object
outer_color: str, optional
The color of the outer line
inner_color: str, optional
The color of the inner line
line_alpha: float, optional
The alpha of the line
center_alpha: float, optional
The alpha of the center
fermi_quat: np.array, optional
If set, rotate the galactic plane into the Fermi frame
flipped: bool, optional
If True, the azimuthal axis is flipped, following equatorial convention
**kwargs: optional
Other plotting options
"""
fermi = False
# if a quaternion is sent, then plot in the Fermi frame
if fermi_quat is not None:
flipped = False
fermi = True
# longitude and latitude arrays
lon_array = np.arange(0, 360, dtype=float)
lat = np.zeros_like(lon_array)
gc = SkyCoord(l=lon_array * u.degree, b=lat * u.degree, frame='galactic')
ra, dec = gc.icrs.ra.deg, gc.icrs.dec.deg
# plot in Fermi frame
if fermi_quat is not None:
ra, dec = radec_to_spacecraft(ra, dec, fermi_quat)
line1 = sky_line(ra, dec, ax, color=outer_color, linewidth=3,
alpha=line_alpha, flipped=flipped, fermi=fermi)
line2 = sky_line(ra, dec, ax, color=inner_color, linewidth=1,
alpha=line_alpha, flipped=flipped, fermi=fermi)
# plot Galactic center
pt1 = sky_point(ra[0], dec[0], ax, marker='o', c=outer_color, s=100,
alpha=center_alpha, edgecolor=None, flipped=flipped,
fermi=fermi)
pt2 = sky_point(ra[0], dec[0], ax, marker='o', c=inner_color, s=20,
alpha=center_alpha, edgecolor=None, flipped=flipped,
fermi=fermi)
return [line1, line2, pt1, pt2]
def sky_heatmap(x, y, heatmap, ax, cmap='RdPu', norm=None, flipped=True,
fermi=False, **kwargs):
"""Plot a heatmap on the sky as a colormap gradient
Inputs:
-----------
x: np.array
The azimuthal coordinate array of the heatmap grid
y: np.array
The polar coordinate array of the heatmap grid
heatmap: np.array
The heatmap array, of shape (num_x, num_y)
ax: matplotlib.axes
Plot axes object
cmap: str, optional
The colormap. Default is 'RdPu'
norm: matplotlib.colors.Normalize or similar, optional
The normalization used to scale the colormapping to the heatmap values.
This can be initialized by Normalize, LogNorm, SymLogNorm, PowerNorm,
or some custom normalization. Default is PowerNorm(gamma=0.3).
flipped: bool, optional
If True, the azimuthal axis is flipped, following equatorial convention
fermi: bool, optional
If True, plot in Fermi spacecraft coordinates, else plot in equatorial.
Default is False.
**kwargs: optional
Other plotting options
Returns:
--------
image: matplotlib.collections.QuadMesh
The reference to the heatmap plot object
"""
theta = np.deg2rad(y)
phi = np.deg2rad(x - 180.0)
if fermi:
flipped = False
theta = np.pi / 2.0 - theta
phi -= np.pi
phi[phi < -np.pi] += 2 * np.pi
shift = int(phi.shape[0] / 2.0)
phi = np.roll(phi, shift)
heatmap = np.roll(heatmap, shift, axis=1)
if flipped:
phi = -phi
image = ax.pcolormesh(phi, theta, heatmap, rasterized=True, cmap=cmap,
norm=norm)
return image