698 lines
23 KiB
Python
698 lines
23 KiB
Python
|
# lookup.py: GSpec and RMfit lookup classes
|
||
|
#
|
||
|
# Authors: William Cleveland (USRA),
|
||
|
# Adam Goldstein (USRA) and
|
||
|
# Daniel Kocevski (NASA)
|
||
|
#
|
||
|
# Portions of the code are Copyright 2020 William Cleveland and
|
||
|
# Adam Goldstein, Universities Space Research Association
|
||
|
# All rights reserved.
|
||
|
#
|
||
|
# Written for the Fermi Gamma-ray Burst Monitor (Fermi-GBM)
|
||
|
#
|
||
|
# This program is free software: you can redistribute it and/or modify
|
||
|
# it under the terms of the GNU General Public License as published by
|
||
|
# the Free Software Foundation, either version 3 of the License, or
|
||
|
# (at your option) any later version.
|
||
|
#
|
||
|
# This program is distributed in the hope that it will be useful,
|
||
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
# GNU General Public License for more details.
|
||
|
#
|
||
|
# You should have received a copy of the GNU General Public License
|
||
|
# along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||
|
#
|
||
|
import datetime as dt
|
||
|
import json
|
||
|
import os.path
|
||
|
import warnings
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from gbm.detectors import Detector
|
||
|
from gbm.file import GbmFile
|
||
|
from gbm.types import ListReader
|
||
|
|
||
|
|
||
|
class LookupMethod:
|
||
|
"""Defines the attributes of a method call"""
|
||
|
|
||
|
def __init__(self):
|
||
|
self.method = None
|
||
|
self.args = None
|
||
|
self.kwargs = {}
|
||
|
|
||
|
@classmethod
|
||
|
def from_dict(cls, d):
|
||
|
r = cls()
|
||
|
r.method = d.get('method', None)
|
||
|
r.args = tuple(d.get('args', None))
|
||
|
r.kwargs = d.get('kwargs', {})
|
||
|
return r
|
||
|
|
||
|
|
||
|
class LookupBackground(LookupMethod):
|
||
|
"""Defines the attributes of a background binning method"""
|
||
|
|
||
|
def __init__(self):
|
||
|
super(LookupBackground, self).__init__()
|
||
|
self.datatype = None
|
||
|
|
||
|
@classmethod
|
||
|
def from_dict(cls, d):
|
||
|
r = super(LookupBackground, cls).from_dict(d)
|
||
|
r.datatype = d.get('datatype', None)
|
||
|
return r
|
||
|
|
||
|
|
||
|
class LookupEnergyBinning(LookupMethod):
|
||
|
"""Defines the attributes of an energy binning method"""
|
||
|
|
||
|
def __init__(self):
|
||
|
super(LookupEnergyBinning, self).__init__()
|
||
|
self.start = None
|
||
|
self.stop = None
|
||
|
|
||
|
@classmethod
|
||
|
def from_dict(cls, d):
|
||
|
r = super(LookupEnergyBinning, cls).from_dict(d)
|
||
|
r.start = d.get('start', None)
|
||
|
r.stop = d.get('stop', None)
|
||
|
return r
|
||
|
|
||
|
|
||
|
class LookupTimeBinning(LookupEnergyBinning):
|
||
|
"""Defines the attributes of a time binning method"""
|
||
|
|
||
|
def __init__(self):
|
||
|
super(LookupTimeBinning, self).__init__()
|
||
|
self.datatype = None
|
||
|
|
||
|
@classmethod
|
||
|
def from_dict(cls, d):
|
||
|
r = super(LookupTimeBinning, cls).from_dict(d)
|
||
|
r.datatype = d.get('datatype', None)
|
||
|
return r
|
||
|
|
||
|
|
||
|
class View:
|
||
|
"""Defines the bounds of a view"""
|
||
|
|
||
|
def __init__(self, xmin=None, xmax=None, ymin=None, ymax=None):
|
||
|
self.xmin = xmin
|
||
|
self.xmax = xmax
|
||
|
self.ymin = ymin
|
||
|
self.ymax = ymax
|
||
|
|
||
|
def __eq__(self, other):
|
||
|
return self.xmin == other.xmin and self.xmax == other.xmax and self.ymin == other.ymin \
|
||
|
and self.ymax == other.ymax
|
||
|
|
||
|
@classmethod
|
||
|
def from_dict(cls, d):
|
||
|
r = cls()
|
||
|
if d:
|
||
|
r.xmin = d.get('xmin', None)
|
||
|
r.xmax = d.get('xmax', None)
|
||
|
r.ymin = d.get('ymin', None)
|
||
|
r.ymax = d.get('ymax', None)
|
||
|
return r
|
||
|
|
||
|
@classmethod
|
||
|
def from_list(cls, l):
|
||
|
r = cls()
|
||
|
r.xmin = l[0]
|
||
|
r.xmax = l[1]
|
||
|
r.ymin = l[2]
|
||
|
r.ymax = l[3]
|
||
|
return r
|
||
|
|
||
|
def to_list(self):
|
||
|
return [self.xmin, self.xmax, self.ymin, self.ymax]
|
||
|
|
||
|
def xrange(self):
|
||
|
return self.xmin, self.xmax
|
||
|
|
||
|
def yrange(self):
|
||
|
return self.ymin, self.ymax
|
||
|
|
||
|
|
||
|
class Binnings:
|
||
|
|
||
|
def __init__(self):
|
||
|
self.energy = None
|
||
|
self.time = None
|
||
|
|
||
|
|
||
|
class Selections:
|
||
|
|
||
|
def __init__(self):
|
||
|
self.background = None
|
||
|
self.energy = None
|
||
|
self.source = None
|
||
|
|
||
|
def add(self, type, item):
|
||
|
if getattr(self, type) is None:
|
||
|
setattr(self, type, list())
|
||
|
getattr(self, type).append(item)
|
||
|
|
||
|
|
||
|
class Views:
|
||
|
|
||
|
def __init__(self):
|
||
|
self.energy = None
|
||
|
self.time = None
|
||
|
|
||
|
|
||
|
class DataFileLookup:
|
||
|
"""Defines all the information associated with a datafile"""
|
||
|
|
||
|
def __init__(self):
|
||
|
self.filename = None
|
||
|
self.detector = None
|
||
|
self.response = None
|
||
|
self.background = None
|
||
|
self.binnings = Binnings()
|
||
|
self.selections = Selections()
|
||
|
self.views = Views()
|
||
|
|
||
|
@classmethod
|
||
|
def from_dict(cls, d):
|
||
|
|
||
|
def set_attributes(obj, d):
|
||
|
for k, v in d.items():
|
||
|
setattr(obj, k, v)
|
||
|
|
||
|
r = cls()
|
||
|
r.filename = d.get('filename', None)
|
||
|
|
||
|
det = d.get('detector', None)
|
||
|
if det:
|
||
|
r.detector = Detector.from_str(det)
|
||
|
|
||
|
r.response = d.get('response', None)
|
||
|
|
||
|
bkg = d.get('background', None)
|
||
|
if bkg:
|
||
|
r.background = LookupBackground.from_dict(bkg)
|
||
|
|
||
|
binnings = d.get('binnings', None)
|
||
|
if binnings:
|
||
|
energies = binnings.get('energy', None)
|
||
|
if energies:
|
||
|
for e in energies:
|
||
|
if r.binnings.energy is None:
|
||
|
r.binnings.energy = [LookupEnergyBinning.from_dict(e)]
|
||
|
else:
|
||
|
r.binnings.energy.append(
|
||
|
LookupEnergyBinning.from_dict(e))
|
||
|
times = binnings.get('time', None)
|
||
|
if times:
|
||
|
for t in times:
|
||
|
if r.binnings.time is None:
|
||
|
r.binnings.time = [LookupTimeBinning.from_dict(t)]
|
||
|
else:
|
||
|
r.binnings.time.append(LookupTimeBinning.from_dict(t))
|
||
|
|
||
|
if 'selections' in d:
|
||
|
set_attributes(r.selections, d['selections'])
|
||
|
|
||
|
views = d.get('views', None)
|
||
|
if views:
|
||
|
e = views.get('energy', None)
|
||
|
if e:
|
||
|
r.views.energy = View.from_dict(e)
|
||
|
t = views.get('time', None)
|
||
|
if t:
|
||
|
r.views.time = View.from_dict(t)
|
||
|
return r
|
||
|
|
||
|
@staticmethod
|
||
|
def assert_selections(selections):
|
||
|
"""Check to ensure the selections are of the correct form.
|
||
|
|
||
|
Parameters:
|
||
|
-----------
|
||
|
selections: tuple or list of tuples
|
||
|
The selection(s) to check
|
||
|
|
||
|
Returns:
|
||
|
--------
|
||
|
selections: list
|
||
|
"""
|
||
|
if (all(isinstance(selection, list) for selection in selections)) | \
|
||
|
(
|
||
|
all(isinstance(selection, tuple) for selection in selections)):
|
||
|
if any(len(selection) != 2 for selection in selections):
|
||
|
raise ValueError('Each range in selections must be of the '
|
||
|
'form (lo, hi)')
|
||
|
else:
|
||
|
return selections
|
||
|
else:
|
||
|
if len(selections) != 2:
|
||
|
raise ValueError('Selections must either be a range of '
|
||
|
'the form (lo, hi) or a list of ranges')
|
||
|
else:
|
||
|
return [selections]
|
||
|
|
||
|
def set_response(self, rsp_filename):
|
||
|
"""Add a response file for the data
|
||
|
|
||
|
Parameters:
|
||
|
--------------
|
||
|
rsp_filename: str
|
||
|
The filename of the response file
|
||
|
"""
|
||
|
if rsp_filename is None:
|
||
|
self.response = None
|
||
|
else:
|
||
|
self.response = os.path.basename(rsp_filename)
|
||
|
|
||
|
def set_background_model(self, background_name, datatype, *args, **kwargs):
|
||
|
"""Add a new background model for the data file
|
||
|
|
||
|
Parameters:
|
||
|
--------------
|
||
|
background_class: str
|
||
|
The background fitting/estimation name
|
||
|
datatype: str
|
||
|
The datatype the background is applied to. Either 'binned' or 'unbinned'
|
||
|
*args:
|
||
|
Additional arguments used by the background class
|
||
|
**kwargs:
|
||
|
Additional keywords used by the background class
|
||
|
"""
|
||
|
bkg = LookupBackground()
|
||
|
bkg.method = background_name
|
||
|
bkg.datatype = datatype
|
||
|
bkg.args = args
|
||
|
bkg.kwargs = kwargs
|
||
|
self.background = bkg
|
||
|
|
||
|
def set_time_binning(self, binning_name, datatype, *args, start=None,
|
||
|
stop=None, **kwargs):
|
||
|
"""Add a new time binning function for the data file
|
||
|
|
||
|
Parameters:
|
||
|
--------------
|
||
|
binning_function: str
|
||
|
The binning function name
|
||
|
datatype: str
|
||
|
The datatype the binning is applied to. Either 'binned' or 'unbinned'
|
||
|
*args:
|
||
|
Additional arguments used by the binning function
|
||
|
start: float, optional
|
||
|
The start of the data range to be rebinned. The default is to start at the
|
||
|
beginning of the histogram segment.
|
||
|
stop: float, optional
|
||
|
The end of the data range to be rebinned. The default is to stop at
|
||
|
the end of the histogram segment.
|
||
|
**kwargs:
|
||
|
Additional keywords used by the binning function
|
||
|
"""
|
||
|
time_bin = LookupTimeBinning()
|
||
|
time_bin.method = binning_name
|
||
|
time_bin.datatype = datatype
|
||
|
time_bin.args = args
|
||
|
time_bin.start = start
|
||
|
time_bin.stop = stop
|
||
|
time_bin.kwargs = kwargs
|
||
|
|
||
|
if self.binnings.time is None:
|
||
|
self.binnings.time = [time_bin]
|
||
|
else:
|
||
|
self.binnings.time.append(time_bin)
|
||
|
|
||
|
def set_energy_binning(self, binning_function, *args, start=None,
|
||
|
stop=None, **kwargs):
|
||
|
"""Add a new energy binning function for the data file
|
||
|
|
||
|
Parameters:
|
||
|
--------------
|
||
|
binning_function: function
|
||
|
The binning function
|
||
|
*args:
|
||
|
Additional arguments used by the binning function
|
||
|
start: float, optional
|
||
|
The start of the data range to be rebinned. The default is to start at the
|
||
|
beginning of the histogram segment.
|
||
|
stop: float, optional
|
||
|
The end of the data range to be rebinned. The default is to stop at
|
||
|
the end of the histogram segment.
|
||
|
**kwargs:
|
||
|
Additional keywords used by the binning function
|
||
|
"""
|
||
|
energy_bin = LookupEnergyBinning()
|
||
|
energy_bin.method = binning_function
|
||
|
energy_bin.args = args
|
||
|
energy_bin.start = start
|
||
|
energy_bin.stop = stop
|
||
|
energy_bin.kwargs = kwargs
|
||
|
|
||
|
if self.binnings.energy is None:
|
||
|
self.binnings.energy = [energy_bin]
|
||
|
else:
|
||
|
self.binnings.energy.append(energy_bin)
|
||
|
|
||
|
def set_source_selection(self, source_intervals):
|
||
|
"""Add source selection(s) for the data file
|
||
|
|
||
|
Parameters:
|
||
|
--------------
|
||
|
dataname: str
|
||
|
The data filename
|
||
|
source_intervals: list
|
||
|
A list of source selection intervals, each item of the list being a tuple
|
||
|
of the format (low, high)
|
||
|
"""
|
||
|
source_intervals = self.assert_selections(source_intervals)
|
||
|
self.selections.source = source_intervals
|
||
|
|
||
|
def set_energy_selection(self, energy_intervals):
|
||
|
"""Add energy selection(s) for the data file
|
||
|
|
||
|
Parameters:
|
||
|
--------------
|
||
|
energy_intervals: list
|
||
|
A list of energy selection intervals, each item of the list being a tuple
|
||
|
of the format (low, high)
|
||
|
"""
|
||
|
energy_intervals = self.assert_selections(energy_intervals)
|
||
|
self.selections.energy = energy_intervals
|
||
|
|
||
|
def set_background_selection(self, background_intervals):
|
||
|
"""Add background selection(s) for the data file
|
||
|
|
||
|
Parameters:
|
||
|
--------------
|
||
|
background_intervals: list
|
||
|
A list of background selection intervals, each item of the list being a tuple
|
||
|
of the format (low, high)
|
||
|
"""
|
||
|
self.selections.background = background_intervals
|
||
|
|
||
|
def add_time_display_view(self, display_range):
|
||
|
"""Add the display range of the lightcurve for the data file
|
||
|
|
||
|
Parameters:
|
||
|
--------------
|
||
|
display_range: list
|
||
|
The values of the lightcurve display window in the format
|
||
|
[xmin, xmax, ymin, ymax]
|
||
|
"""
|
||
|
self.views.time = View(display_range[0], display_range[1],
|
||
|
display_range[2], display_range[3])
|
||
|
|
||
|
def add_energy_display_view(self, display_range):
|
||
|
"""Add the display range of the count spectrum for the data file
|
||
|
|
||
|
Parameters:
|
||
|
--------------
|
||
|
dataname: str
|
||
|
The data filename
|
||
|
display_range: list
|
||
|
The values of the count spectrum display window in the format
|
||
|
[xmin, xmax, ymin, ymax]
|
||
|
"""
|
||
|
self.views.energy = View(display_range[0], display_range[1],
|
||
|
display_range[2], display_range[3])
|
||
|
|
||
|
|
||
|
class LookupFile:
|
||
|
"""Class for an Gspec lookup file
|
||
|
|
||
|
The lookup file contains one or more data files.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, *args, **kwargs):
|
||
|
self.file_date = None
|
||
|
self.datafiles = dict()
|
||
|
|
||
|
def __getitem__(self, name):
|
||
|
return self.datafiles[name]
|
||
|
|
||
|
def __delitem__(self, key):
|
||
|
del self.datafiles[key]
|
||
|
|
||
|
def __setitem__(self, key, value):
|
||
|
if isinstance(value, DataFileLookup):
|
||
|
self.datafiles[key] = value
|
||
|
else:
|
||
|
raise ValueError("not a DataFile")
|
||
|
|
||
|
def files(self):
|
||
|
"""Return the data filenames contained within the lookup"""
|
||
|
return self.datafiles.keys()
|
||
|
|
||
|
def assert_has_datafile(self, dataname):
|
||
|
"""Check to see if the data file has been added to the lookup
|
||
|
|
||
|
Parameters:
|
||
|
--------------
|
||
|
dataname: str
|
||
|
The data file name
|
||
|
"""
|
||
|
if dataname not in self.datafiles.keys():
|
||
|
raise KeyError('File {0} not currently tracked. Add this file to '
|
||
|
'the lookup and try again.'.format(dataname))
|
||
|
|
||
|
def add_data_file(self, filepath):
|
||
|
df = DataFileLookup()
|
||
|
fn = GbmFile.from_path(filepath)
|
||
|
df.filename = fn.basename()
|
||
|
df.detector = fn.detector
|
||
|
self.datafiles[df.filename] = df
|
||
|
|
||
|
@classmethod
|
||
|
def from_dict(cls, d):
|
||
|
r = cls()
|
||
|
r.file_date = d.get('file_date', None)
|
||
|
datafiles = d.get('datafiles', None)
|
||
|
if datafiles:
|
||
|
for k, v in datafiles.items():
|
||
|
df = DataFileLookup.from_dict(v)
|
||
|
df.filename = k
|
||
|
r.datafiles[k] = df
|
||
|
return r
|
||
|
|
||
|
def write_to(self, fpath):
|
||
|
"""
|
||
|
Write contents of LookupFile to the given file path as a JSON file.
|
||
|
:param fpath: full pathname for JSON file
|
||
|
:return: None
|
||
|
"""
|
||
|
self.file_date = dt.datetime.utcnow().isoformat()
|
||
|
with open(fpath, "w") as fp:
|
||
|
json.dump(self, fp, cls=LookupEncoder, indent=4)
|
||
|
|
||
|
@classmethod
|
||
|
def read_from(cls, fpath):
|
||
|
"""
|
||
|
Load values to LookupFile from the JSON file at the given path.
|
||
|
:param fpath: full pathname for JSON file
|
||
|
:return: new LookupFile object
|
||
|
"""
|
||
|
with open(fpath, "r") as fp:
|
||
|
j = json.load(fp)
|
||
|
return cls.from_dict(j)
|
||
|
|
||
|
@classmethod
|
||
|
def read_from_rmfit(cls, fpath, ti_file=None, dataname=None):
|
||
|
"""
|
||
|
Load values to LookupFile from the RMFIT created lookup file at the given path.
|
||
|
:param fpath: full pathname for RMFIT created lookup file
|
||
|
:param ti_file: full pathname for RMFIT created ti file.
|
||
|
:param dataname: the name of the datafile to associate this lookup file with
|
||
|
:return: new LookupFile object
|
||
|
"""
|
||
|
|
||
|
# RMFit selections are an 2xN array where the first element is the start values and the second element
|
||
|
# are the end values. It needs to be transposed into a Nx2 array. Drop first is used to drop the convex
|
||
|
# hull if the selections contain one.
|
||
|
def transform_selections(x, drop_first=False):
|
||
|
result = None
|
||
|
if x:
|
||
|
result = np.array(x).reshape(2, -1).transpose().tolist()
|
||
|
if drop_first:
|
||
|
result = result[1:]
|
||
|
return result
|
||
|
|
||
|
# Begin loading RMFit lookup file making the contents a list of tokens.
|
||
|
tokens = []
|
||
|
with open(fpath, 'r') as contents:
|
||
|
for line in contents:
|
||
|
x = line.strip().split()
|
||
|
if x:
|
||
|
try:
|
||
|
# If the first element a number? Then add the array to the tokens.
|
||
|
float(x[0])
|
||
|
tokens += x
|
||
|
except ValueError:
|
||
|
# Otherwise, it's a string and we will append the entire line as a token.
|
||
|
tokens.append(line)
|
||
|
|
||
|
# Let's create the DataFile object
|
||
|
data_file = DataFileLookup()
|
||
|
|
||
|
# The input data file is based on the lookup filename
|
||
|
f = GbmFile.from_path(fpath)
|
||
|
|
||
|
if f.extension == 'lu':
|
||
|
if f.data_type == 'ctime' or f.data_type == 'cspec':
|
||
|
f.extension = 'pha'
|
||
|
elif f.data_type == 'tte':
|
||
|
f.extension = 'fit'
|
||
|
else:
|
||
|
raise ValueError('Not a valid lookup filename')
|
||
|
else:
|
||
|
raise ValueError("Not a valid lookup filename")
|
||
|
|
||
|
if dataname:
|
||
|
data_file.filename = os.path.basename(dataname)
|
||
|
else:
|
||
|
data_file.filename = f.basename()
|
||
|
|
||
|
lr = ListReader(tokens)
|
||
|
|
||
|
# energy edges, if None is returned we need to read the next value anyway which should be zero.
|
||
|
energy_edges = lr.get_n(int, rmfit=True)
|
||
|
if energy_edges:
|
||
|
# TODO: add_energy_binning unresolved for class 'DataFileLookup'
|
||
|
data_file.add_energy_binning('By Edge Index',
|
||
|
np.array(energy_edges))
|
||
|
|
||
|
# energy selections, if None is returned we need to read the next value anyway which should be zero.
|
||
|
data_file.selections.energy = transform_selections(
|
||
|
lr.get_n(float, rmfit=True), drop_first=True)
|
||
|
|
||
|
# rebinned time edges, if None is returned we need to read the next value anyway which should be zero.
|
||
|
time_edges = lr.get_n(int, rmfit=True)
|
||
|
if time_edges:
|
||
|
if f.data_type == 'ctime' or f.data_type == 'cspec':
|
||
|
data_file.set_time_binning('By Edge Index', 'binned',
|
||
|
np.array(time_edges))
|
||
|
elif f.data_type == 'tte':
|
||
|
# Read TI file
|
||
|
if ti_file:
|
||
|
with open(ti_file, 'r') as fp:
|
||
|
txt = list(fp)
|
||
|
txt = txt[1:]
|
||
|
tte_edges = np.array([t.strip() for t in txt], dtype=float)
|
||
|
data_file.set_time_binning('By Time Edge', 'unbinned',
|
||
|
np.array(tte_edges))
|
||
|
else:
|
||
|
warnings.warn("No TTE edges found. Need '.ti' file")
|
||
|
|
||
|
# time selections, if None is returned we need to read the next value anyway which should be zero.
|
||
|
data_file.selections.source = transform_selections(
|
||
|
lr.get_n(float, rmfit=True), drop_first=True)
|
||
|
|
||
|
# background selections, if None is returned we need to read the next value anyway which should be zero.
|
||
|
data_file.selections.background = transform_selections(
|
||
|
lr.get_n(float, rmfit=True))
|
||
|
|
||
|
# TODO: For now skip over binning names
|
||
|
lr.skip(3) # Assuming 'STACKED SPECTRA', 'LOG', 'LOG'
|
||
|
|
||
|
# time and energy window ranges: (xmin, xmax, ymin, ymax)
|
||
|
v = lr.get(4, float)
|
||
|
data_file.views.time = View(v[0], v[1], v[2], v[3])
|
||
|
v = lr.get(4, float)
|
||
|
data_file.views.energy = View(v[0], v[1], v[2], v[3])
|
||
|
|
||
|
# polynomial background order
|
||
|
# data_file.background = {'poly_order': lr.get(cls=int)}
|
||
|
poly_order = lr.get(cls=int)
|
||
|
data_file.set_background_model('Polynomial', 'binned', poly_order)
|
||
|
|
||
|
# Add the data file to a newly created lookup file
|
||
|
lu = cls()
|
||
|
lu.datafiles[data_file.filename] = data_file
|
||
|
return lu
|
||
|
|
||
|
def merge_lookup(self, lookup, overwrite=False):
|
||
|
"""Merge an existing lookup into this lookup
|
||
|
|
||
|
Parameters:
|
||
|
--------------
|
||
|
lookup: GspecLookup
|
||
|
The lookup object to be merged into this lookup
|
||
|
overwrite: bool, optional
|
||
|
If set to True, then any datanames in the current lookup will be overwritten
|
||
|
if those same datanames are in the input lookup. Default is False
|
||
|
"""
|
||
|
# get datanames of the input lookup
|
||
|
datanames = lookup.datafiles.keys()
|
||
|
for dataname in datanames:
|
||
|
# if dataname is already in this lookup and we don't want to overwrite
|
||
|
if (dataname in self.datafiles) & (not overwrite):
|
||
|
continue
|
||
|
self.datafiles[dataname] = lookup.datafiles[dataname]
|
||
|
|
||
|
# TODO: Remove?
|
||
|
def split_off_dataname(self, dataname):
|
||
|
"""Return a new lookup object containing only the requested data file
|
||
|
|
||
|
Parameters:
|
||
|
--------------
|
||
|
dataname: str
|
||
|
The requested data filename
|
||
|
|
||
|
Returns:
|
||
|
-----------
|
||
|
new_lookup: GspecLookup
|
||
|
The new lookup object
|
||
|
"""
|
||
|
self.assert_has_datafile(dataname)
|
||
|
new_lookup = LookupFile()
|
||
|
new_lookup[dataname] = self.datafiles[dataname]
|
||
|
return new_lookup
|
||
|
|
||
|
def display_lookup(self):
|
||
|
"""Pretty print a lookup for display (in json format)
|
||
|
"""
|
||
|
lu = json.dumps(self.datafiles, indent=4, separators=(',', ': '),
|
||
|
cls=LookupEncoder)
|
||
|
return lu
|
||
|
|
||
|
|
||
|
class LookupEncoder(json.JSONEncoder):
|
||
|
"""Custom JSON encoder for numpy arrays. Converts them to a list.
|
||
|
"""
|
||
|
|
||
|
def default(self, obj):
|
||
|
if isinstance(obj, DataFileLookup):
|
||
|
d = dict(obj.__dict__)
|
||
|
del d['filename']
|
||
|
return d
|
||
|
if isinstance(obj, np.ndarray):
|
||
|
return obj.tolist()
|
||
|
if isinstance(obj, Detector):
|
||
|
return obj.short_name
|
||
|
elif hasattr(obj, 'to_dict'):
|
||
|
return obj.to_dict()
|
||
|
elif hasattr(obj, '__dict__'):
|
||
|
return obj.__dict__
|
||
|
return json.JSONEncoder.default(self, obj)
|
||
|
|
||
|
|
||
|
class LookupDecoder(json.JSONDecoder):
|
||
|
"""Custom JSON decoder to turn JSON lists into numpy arrays
|
||
|
"""
|
||
|
|
||
|
def __init__(self, *args, **kwargs):
|
||
|
json.JSONDecoder.__init__(self, object_hook=self.object_hook,
|
||
|
*args, **kwargs)
|
||
|
|
||
|
def object_hook(self, obj):
|
||
|
# if object is a dictionary
|
||
|
if type(obj) == dict:
|
||
|
for key in obj.keys():
|
||
|
# and if the value is a list, change to numpy array
|
||
|
obj_type = type(obj[key])
|
||
|
if obj_type == list:
|
||
|
obj[key] = np.array(obj[key], dtype=type(obj[key]))
|
||
|
|
||
|
return obj
|