import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.basemap import Basemap def data_read(file): with open(file, 'r') as f: data = f.readlines() row_header = int(data[0].split(',')[1].strip()) row_variable = int(data[0].split(',')[5].strip()) row_column = int(data[0].split(',')[6].strip()) var = data[row_header - row_variable:row_header] data = [tuple(s.replace('\n', '').strip() for s in row.split(',')) for row in data[row_header:-1]] dtype = [] for row in var: row = [s.replace("'", '').strip() for s in row.split(',')] num = int(row[2]) type_s = 'float' if num > 0 else 'string' for k in range(num): name_s = row[0] + ('_{:d}'.format(k + 1) if num > 1 else '') dtype.append((name_s, type_s)) assert len(dtype) == row_column data = np.array(data, dtype=dtype) return dtype, data def orbit(): _, data = data_read('assets/orbit.csv') lat, lon = data['Latitude'], data['Longitude'] - 180 m = Basemap() m.drawcoastlines() m.fillcontinents(color='white', lake_color='lightskyblue') m.drawmapboundary(fill_color='skyblue') m.scatter(lon, lat, s=1) plt.savefig('docs/orbit.png', bbox_inches='tight') def GCR(M=1): _, data = data_read('assets/CREME86-M{:d}.csv'.format(M)) E = data['Energy'] proton_i, proton_d = data['IFlux_1'], data['DFlux_1'] alpha_i, alpha_d = data['IFlux_2'], data['DFlux_2'] fig, ax1 = plt.subplots(1, 1) ax1.plot(E, proton_i, label=r'$p$') ax1.plot(E, alpha_i, label=r'$\alpha$') ax1.set_yscale('log') ax1.set_ylabel(r'$Integrated\ Flux\ (\mathrm{m^{-2}sr^{-1}s^{-1}})$') ax1.legend(loc="upper left") ax2 = ax1.twinx() ax2.plot(E, proton_d, linestyle=':', label=r'$p$') ax2.plot(E, alpha_d, linestyle=':', label=r'$\alpha$') ax2.set_yscale('log') ax2.set_ylabel(r'$Differential\ Flux\ (\mathrm{m^{-2}sr^{-1}s^{-1}MeV^{-1}})$') ax2.legend(loc="upper right") ax1.set_xlabel(r'$Energy\ (\mathrm{MeV})$') ax1.set_xlim(1, 1e5) plt.title('Average spectra - M = {:d}'.format(M)) plt.xscale('log') plt.savefig('docs/spectra-M{:d}'.format(M)) GCR() GCR(3)