import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.basemap import Basemap def read_block(data): row_header = int(data[0].split(',')[1].strip()) row_variable = int(data[0].split(',')[5].strip()) row_column = int(data[0].split(',')[6].strip()) row_data = int(data[0].split(',')[7].strip()) var = data[row_header - row_variable:row_header] data = [tuple(s.replace('\n', '').strip() for s in row.split(',')) for row in data[row_header:-1]] dtype = [] for row in var: row = [s.replace("'", '').strip() for s in row.split(',')] num = int(row[2]) type_s = 'float' if num > 0 else 'string' for k in range(num): name_s = row[0] + ('_{:d}'.format(k + 1) if num > 1 else '') dtype.append((name_s, type_s)) assert len(dtype) == row_column assert len(data) == row_data or row_data == -1 data = np.array(data, dtype=dtype) return dtype, data def data_read(file): with open(file, 'r') as f: data = f.readlines() res = [] idx_a, idx_b = 0, 0 while idx_b < len(data): if data[idx_b].replace('\n', '') == "'End of Block'": res.append(read_block(data[idx_a:idx_b + 1])) idx_a = idx_b + 1 idx_b += 1 res.append(read_block(data[idx_a:])) return res def orbit(): _, data = data_read('assets/orbit.csv')[0] lat, lon = data['Latitude'], data['Longitude'] - 180 m = Basemap() m.drawcoastlines() m.fillcontinents(color='white', lake_color='lightskyblue') m.drawmapboundary(fill_color='skyblue') m.scatter(lon, lat, s=1) plt.savefig('docs/orbit.png', bbox_inches='tight') def GCR(M=1, ax=None): _, data = data_read('assets/CREME86-M{:d}.csv'.format(M))[0] E = data['Energy'] proton_i, proton_d = data['IFlux_1'], data['DFlux_1'] alpha_i, alpha_d = data['IFlux_2'], data['DFlux_2'] if ax: ax1 = ax else: _, ax1 = plt.subplots(1, 1) ax1.plot(E, proton_i, label=r'$p$') ax1.plot(E, alpha_i, label=r'$\alpha$') ax1.set_ylim([1, 5 * 1e2]) ax1.set_yscale('log') ax1.set_ylabel(r'$Integrated\ Flux\ (\mathrm{m^{-2}sr^{-1}s^{-1}})$') ax1.legend(loc="upper left") ax2 = ax1.twinx() ax2.plot(E, proton_d, linestyle=':', label=r'$p$') ax2.plot(E, alpha_d, linestyle=':', label=r'$\alpha$') ax2.set_ylim([1e-5, 5 * 1e-2]) ax2.set_yscale('log') ax2.set_ylabel(r'$Differential\ Flux\ (\mathrm{m^{-2}sr^{-1}s^{-1}MeV^{-1}})$') ax2.legend(loc="upper right") ax1.set_xlabel(r'$Energy\ (\mathrm{MeV})$') ax1.set_xlim(1, 1e5) if ax is None: plt.title('Average spectra - M = {:d}'.format(M)) plt.xscale('log') plt.savefig('docs/spectra-M{:d}.png'.format(M), bbox_inches='tight') else: ax.set_title('Average spectra - M = {:d}'.format(M)) ax.set_xscale('log') def sun(): _, data = data_read('assets/sun.csv')[1] E = data['Energy'] proton_i, proton_d = data['IFlux_1'], data['DFlux_1'] alpha_i, alpha_d = data['IFlux_2'], data['DFlux_2'] _, ax1 = plt.subplots(1, 1, dpi=150) ax1.plot(E, proton_i, label=r'$p$') ax1.plot(E, alpha_i, label=r'$\alpha$') ax1.set_ylim([1e-2, 5 * 1e3]) ax1.set_yscale('log') ax1.set_ylabel(r'$Integrated\ Flux\ (\mathrm{cm^{-2}})$') ax1.legend(loc="upper left") ax2 = ax1.twinx() ax2.plot(E, proton_d, linestyle=':', label=r'$p$') ax2.plot(E, alpha_d, linestyle=':', label=r'$\alpha$') ax2.set_ylim([1e-5, 5 * 1e0]) ax2.set_yscale('log') ax2.set_ylabel(r'$Differential\ Flux\ (\mathrm{cm^{-2}MeV^{-1}})$') ax2.legend(loc="upper right") ax1.set_xlabel(r'$Energy\ (\mathrm{MeV})$') ax1.set_xlim(1e-1, 1e3) plt.title('Average spectra - Sun') plt.xscale('log') plt.savefig('docs/spectra-sun', bbox_inches='tight') # orbit() # fig = plt.figure(figsize=(20, 10), dpi=150) # GCR(1, fig.add_subplot(1, 2, 1)) # GCR(3, fig.add_subplot(1, 2, 2)) # fig.savefig('docs/spectra.png', bbox_inches='tight') # GCR(1) # GCR(3) sun()