change: readme

This commit is contained in:
liuyihui 2022-05-15 00:48:34 +08:00
parent 234af7dab9
commit d75528749c
2 changed files with 39 additions and 79 deletions

View File

@ -107,18 +107,6 @@ $$
两者同时进行拟合与比较,同时考虑简洁性,除`H`以外,其余元素均采用双指数模型,`H`采用简化模型。
<div align=center>
| Z | H | He | Li | Be | B | C | N | O | F | Ne |
|:--:|:-------:|:-------:|:-------:|:-------:|:-------:|:-------:|:-------:|:-------:|:-------:|:-------:|
| $R^2$ | 0.98915 | 0.98936 | 0.99755 | 0.99708 | 0.99569 | 0.98936 | 0.98892 | 0.98936 | 0.99323 | 0.99014 |
| Z | Na | Mg | Al | Si | P | S | Cl | Ar | K | Ca |
| $R^2$ | 0.99263 | 0.98972 | 0.99217 | 0.98873 | 0.99183 | 0.98873 | 0.99087 | 0.99432 | 0.98963 | 0.98935 |
| Z | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | | |
| $R^2$ | 0.99251 | 0.9934 | 0.99424 | 0.99313 | 0.99385 | 0.99351 | 0.99426 | 0.99231 | | |
</div>
#### 俘获辐射带
1. 电子[^5]
在轨道较高($L>2.5$)的内带中,电子能谱中有$\sim64\%$符合指数分布,$\sim4\%$符合幂律分布。
@ -162,43 +150,44 @@ $$
<div align=center>
| Partical | Model | $E_{min}(\mathrm{MeV})$ | $E_{max}(\mathrm{MeV})$ | Flux($\mathrm{s^{-1}}$) | Run | Zoom Factor |
|:--------:|:--------------------------------------------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-------:|:-----------:|
| $e^{-}$ | $j=j_0e^{-\frac{E}{E_0}}$ | 0.1 | 10 | 9.23242E+11 | 923242 | 999999.8096 |
| `p` | $j=j_0(E-\beta)^{-\alpha}$ | 50 | 1000 | 42853994.15 | 100000 | 428.5399415 |
| `H` | $\frac{C_1\beta^{\alpha-1}}{pc}\left(\frac{pc}{pc+C_2}\right)^{C_3}$ | 200 | 100000 | 12854310.92 | 100000 | 128.5431092 |
| `He` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 1718828.12 | 100000 | 17.1882812 |
| `Li` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 12982.36284 | 100000 | 0.129823628 |
| `Be` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 6687.159271 | 100000 | 0.066871593 |
| `B` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 17093.65985 | 100000 | 0.170936599 |
| `C` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 52245.07239 | 100000 | 0.522450724 |
| `N` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 13564.66838 | 100000 | 0.135646684 |
| `O` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 48807.93662 | 100000 | 0.488079366 |
| `F` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 1122.681148 | 100000 | 0.011226811 |
| `Ne` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 8065.236798 | 100000 | 0.080652368 |
| `Na` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 1865.503552 | 100000 | 0.018655036 |
| `Mg` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 10928.24228 | 100000 | 0.109282423 |
| `Al` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 1938.943418 | 100000 | 0.019389434 |
| `Si` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 8262.870777 | 100000 | 0.082628708 |
| `P` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 413.5749377 | 100000 | 0.004135749 |
| `S` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 1659.707 | 100000 | 0.01659707 |
| `Cl` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 371.7198798 | 100000 | 0.003717199 |
| `Ar` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 751.2576633 | 100000 | 0.007512577 |
| `K` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 466.3178791 | 100000 | 0.004663179 |
| `Ca` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 1161.134206 | 100000 | 0.011611342 |
| `Sc` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 231.3722059 | 100000 | 0.002313722 |
| `Ti` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 828.6605823 | 100000 | 0.008286606 |
| `V` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 403.8859746 | 100000 | 0.00403886 |
| `Cr` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 783.4909673 | 100000 | 0.00783491 |
| `Mn` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 570.5548534 | 100000 | 0.005705549 |
| `Fe` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 6024.476681 | 100000 | 0.060244767 |
| `Co` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 20.89166947 | 100000 | 0.000208917 |
| `Ni` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 200 | 100000 | 292.8131737 | 100000 | 0.002928132 |
| Partical | Model | $R^2$ | $E_{min}(\mathrm{MeV})$ | $E_{max}(\mathrm{MeV})$ | Flux($\mathrm{s^{-1}}$) | Run | Zoom Factor |
|:--------:|:--------------------------------------------------------------------:|:-------:|:-----------------------:|:-----------------------:|:-----------------------:|:-------:|:-----------:|
| $e^{-}$ | $j=j_0e^{-\frac{E}{E_0}}$ | 0.98107 | 0.1 | 10 | 9.23242E+11 | 923242 | 999999.8096 |
| `p` | $j=j_0(E-\beta)^{-\alpha}$ | 0.99883 | 50 | 1000 | 42853994.15 | 100000 | 428.5399415 |
| `H` | $\frac{C_1\beta^{\alpha-1}}{pc}\left(\frac{pc}{pc+C_2}\right)^{C_3}$ | 0.98915 | 200 | 100000 | 12854310.92 | 100000 | 128.5431092 |
| `He` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 0.98936 | 200 | 100000 | 1718828.12 | 100000 | 17.1882812 |
| `Li` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 0.99755 | 200 | 100000 | 12982.36284 | 100000 | 0.129823628 |
| `Be` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 0.99708 | 200 | 100000 | 6687.159271 | 100000 | 0.066871593 |
| `B` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 0.99569 | 200 | 100000 | 17093.65985 | 100000 | 0.170936599 |
| `C` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 0.98936 | 200 | 100000 | 52245.07239 | 100000 | 0.522450724 |
| `N` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 0.98892 | 200 | 100000 | 13564.66838 | 100000 | 0.135646684 |
| `O` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 0.98936 | 200 | 100000 | 48807.93662 | 100000 | 0.488079366 |
| `F` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 0.99323 | 200 | 100000 | 1122.681148 | 100000 | 0.011226811 |
| `Ne` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 0.99014 | 200 | 100000 | 8065.236798 | 100000 | 0.080652368 |
| `Na` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 0.99263 | 200 | 100000 | 1865.503552 | 100000 | 0.018655036 |
| `Mg` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 0.98972 | 200 | 100000 | 10928.24228 | 100000 | 0.109282423 |
| `Al` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 0.99217 | 200 | 100000 | 1938.943418 | 100000 | 0.019389434 |
| `Si` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 0.98873 | 200 | 100000 | 8262.870777 | 100000 | 0.082628708 |
| `P` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 0.99183 | 200 | 100000 | 413.5749377 | 100000 | 0.004135749 |
| `S` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 0.98873 | 200 | 100000 | 1659.707 | 100000 | 0.01659707 |
| `Cl` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 0.99087 | 200 | 100000 | 371.7198798 | 100000 | 0.003717199 |
| `Ar` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 0.99432 | 200 | 100000 | 751.2576633 | 100000 | 0.007512577 |
| `K` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 0.98963 | 200 | 100000 | 466.3178791 | 100000 | 0.004663179 |
| `Ca` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 0.98935 | 200 | 100000 | 1161.134206 | 100000 | 0.011611342 |
| `Sc` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 0.99251 | 200 | 100000 | 231.3722059 | 100000 | 0.002313722 |
| `Ti` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 0.9934 | 200 | 100000 | 828.6605823 | 100000 | 0.008286606 |
| `V` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 0.99424 | 200 | 100000 | 403.8859746 | 100000 | 0.00403886 |
| `Cr` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 0.99313 | 200 | 100000 | 783.4909673 | 100000 | 0.00783491 |
| `Mn` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 0.99385 | 200 | 100000 | 570.5548534 | 100000 | 0.005705549 |
| `Fe` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 0.99351 | 200 | 100000 | 6024.476681 | 100000 | 0.060244767 |
| `Co` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 0.99426 | 200 | 100000 | 20.89166947 | 100000 | 0.000208917 |
| `Ni` | $C_1e^{-C_2E}(1-e^{-C_3E+C_4})$ | 0.99231 | 200 | 100000 | 292.8131737 | 100000 | 0.002928132 |
</div>
### GCR
由于该模型较为简单,使用`Geant4`的`General Particle Source``GPS`)生成源可以较为方便的进行,
1. 电子
由于该模型较为简单,使用`Geant4`的`General Particle Source``GPS`)可以较为方便地生成源,
```macro
/gps/source/clear
/gps/source/add 1
@ -212,23 +201,12 @@ $$
/gps/ene/ezero 0.0824
/gps/ang/type iso
/gps/ang/maxtheta 90 deg
/run/beamOn
/gps/source/clear
/gps/source/add 1
/gps/particle proton
/gps/pos/type Surface
/gps/pos/shape Sphere
/gps/pos/radius 15 m
/gps/ene/type Pow
/gps/ene/min 200 MeV
/gps/ene/max 100 GeV
/gps/ene/alpha 2.40873
/gps/ang/type iso
/gps/ang/maxtheta 90 deg
/run/beamOn 100000
/run/beamOn 923242
```
2. 质子
由于模型额外添加了平移项,`GPS`较为复杂,因此和俘获辐射一致,使用`G4ParticleGun`生成。
### 俘获辐射
由于模型较为复杂,且需要发射的粒子种类繁多,因此该部分的粒子使用`G4`自行生成。

View File

@ -10,10 +10,8 @@
# 初始化
/run/initialize
/gps/source/clear
# Trapped electron
/gps/source/add 21544
/gps/particle e-
/gps/pos/type Surface
/gps/pos/shape Sphere
@ -24,20 +22,4 @@
/gps/ene/ezero 0.0824
/gps/ang/type iso
/gps/ang/maxtheta 90 deg
/gps/source/add 1
/gps/particle proton
/gps/pos/type Surface
/gps/pos/shape Sphere
/gps/pos/radius 15 m
/gps/ene/type Pow
/gps/ene/min 200 MeV
/gps/ene/max 100 GeV
/gps/ene/alpha 2.40873
/gps/ang/type iso
/gps/ang/maxtheta 90 deg
/run/beamOn 923285
# list
/gps/source/list
/run/beamOn 923242