2022-10-16 17:16:25 +08:00
|
|
|
import numpy as np
|
|
|
|
import pandas as pd
|
|
|
|
|
|
|
|
df = pd.read_csv('result/res-P.csv')
|
|
|
|
|
|
|
|
mass = pd.to_numeric(df.iloc[0, 1:38])
|
|
|
|
zoom = pd.to_numeric(df.iloc[2:, 39])
|
|
|
|
omegaT = pd.to_numeric(df.iloc[1, 1:38])
|
|
|
|
omegaR = pd.to_numeric(df.iloc[2:, 38])
|
|
|
|
|
|
|
|
eDep = {}
|
|
|
|
for k in range(2, 32):
|
|
|
|
name = df.iloc[k, 0]
|
|
|
|
data = pd.to_numeric(df.iloc[k, 1:])
|
|
|
|
|
|
|
|
eDep[name] = 0
|
|
|
|
for i in range(37):
|
|
|
|
eDep[name] += zoom[k] * data[i]
|
|
|
|
|
|
|
|
aDose = {}
|
|
|
|
for k in range(2, 32):
|
|
|
|
name = df.iloc[k, 0]
|
|
|
|
data = pd.to_numeric(df.iloc[k, 1:])
|
|
|
|
|
|
|
|
aDose[name] = 0
|
|
|
|
for i in range(37):
|
|
|
|
aDose[name] += 30 * 86400 * zoom[k] * data[i] * 1.6 * 1e-10 / mass[i]
|
|
|
|
|
|
|
|
eqDose = {}
|
|
|
|
for k in range(2, 32):
|
|
|
|
name = df.iloc[k, 0]
|
|
|
|
data = pd.to_numeric(df.iloc[k, 1:])
|
|
|
|
|
|
|
|
eqDose[name] = 0
|
|
|
|
for i in range(37):
|
|
|
|
eqDose[name] += 30 * 86400 * omegaR[k] * zoom[k] * data[i] * 1.6 * 1e-10 / mass[i]
|
|
|
|
|
|
|
|
efDose = {}
|
|
|
|
for k in range(2, 32):
|
|
|
|
name = df.iloc[k, 0]
|
|
|
|
data = pd.to_numeric(df.iloc[k, 1:])
|
|
|
|
|
|
|
|
efDose[name] = 0
|
|
|
|
for i in range(37):
|
|
|
|
efDose[name] += 30 * 86400 * omegaR[k] * zoom[k] * omegaT[i] * data[i] * 1.6 * 1e-10 / mass[i]
|
|
|
|
|
|
|
|
res = pd.DataFrame({
|
|
|
|
'energy deposition': pd.Series(eDep),
|
|
|
|
'absorbed dose': pd.Series(aDose),
|
|
|
|
'equivalent dose': pd.Series(eqDose),
|
|
|
|
'effective dose': pd.Series(efDose)
|
|
|
|
})
|
|
|
|
res.index.name = 'Particle'
|
|
|
|
res.loc['Sum'] = res.apply(lambda x: x.sum())
|
|
|
|
|
|
|
|
res.to_csv('result/anl-P.csv')
|
|
|
|
|
|
|
|
# -----------------------------------------------
|
|
|
|
|
|
|
|
df = pd.read_csv('result/res-O.csv')
|
|
|
|
|
|
|
|
mass = pd.to_numeric(df.iloc[2:, 31])
|
|
|
|
zoom = pd.to_numeric(df.iloc[0, 1:31])
|
|
|
|
omegaT = pd.to_numeric(df.iloc[2:, 32])
|
|
|
|
omegaR = pd.to_numeric(df.iloc[1, 1:31])
|
|
|
|
|
|
|
|
eDep = {}
|
|
|
|
for k in range(2, 39):
|
|
|
|
name = df.iloc[k, 0]
|
|
|
|
data = pd.to_numeric(df.iloc[k, 1:])
|
|
|
|
|
|
|
|
eDep[name] = 0
|
|
|
|
for i in range(30):
|
|
|
|
eDep[name] += zoom[i] * data[i]
|
|
|
|
|
|
|
|
aDose = {}
|
|
|
|
for k in range(2, 39):
|
|
|
|
name = df.iloc[k, 0]
|
|
|
|
data = pd.to_numeric(df.iloc[k, 1:])
|
|
|
|
|
|
|
|
aDose[name] = 0
|
|
|
|
for i in range(30):
|
|
|
|
aDose[name] += 30 * 86400 * zoom[i] * data[i] * 1.6 * 1e-10 / mass[k]
|
|
|
|
|
|
|
|
eqDose = {}
|
|
|
|
for k in range(2, 39):
|
|
|
|
name = df.iloc[k, 0]
|
|
|
|
data = pd.to_numeric(df.iloc[k, 1:])
|
|
|
|
|
|
|
|
eqDose[name] = 0
|
|
|
|
for i in range(30):
|
|
|
|
eqDose[name] += 30 * 86400 * omegaR[i] * zoom[i] * data[i] * 1.6 * 1e-10 / mass[k]
|
|
|
|
|
|
|
|
efDose = {}
|
|
|
|
for k in range(2, 39):
|
|
|
|
name = df.iloc[k, 0]
|
|
|
|
data = pd.to_numeric(df.iloc[k, 1:])
|
|
|
|
|
|
|
|
efDose[name] = 0
|
|
|
|
for i in range(30):
|
|
|
|
efDose[name] += 30 * 86400 * omegaR[i] * zoom[i] * omegaT[k] * data[i] * 1.6 * 1e-10 / mass[k]
|
|
|
|
|
|
|
|
res = pd.DataFrame({
|
|
|
|
'energy deposition': pd.Series(eDep),
|
|
|
|
'absorbed dose': pd.Series(aDose),
|
|
|
|
'equivalent dose': pd.Series(eqDose),
|
|
|
|
'effective dose': pd.Series(efDose)
|
|
|
|
})
|
|
|
|
res.index.name = 'Organ'
|
|
|
|
res.loc['Sum'] = res.apply(lambda x: x.sum())
|
|
|
|
|
|
|
|
res.to_csv('result/anl-O.csv')
|
|
|
|
|
|
|
|
# -----------------------------------------------
|
|
|
|
|
|
|
|
df = pd.read_csv('result/res-O.csv')
|
|
|
|
|
|
|
|
organ = df.iloc[2:, 0].to_numpy()
|
|
|
|
index = df.columns.to_numpy()[1:-2]
|
|
|
|
mass = pd.to_numeric(df.iloc[2:, 31])
|
|
|
|
zoom = pd.to_numeric(df.iloc[0, 1:31])
|
|
|
|
omegaT = pd.to_numeric(df.iloc[2:, 32])
|
|
|
|
omegaR = pd.to_numeric(df.iloc[1, 1:31])
|
|
|
|
|
|
|
|
eDep = {}
|
|
|
|
for name in index:
|
|
|
|
eDep[name] = np.zeros(shape=(37, ))
|
|
|
|
|
|
|
|
for k in range(2, 39):
|
|
|
|
data = pd.to_numeric(df.iloc[k, 1:])
|
|
|
|
|
|
|
|
for i in range(30):
|
|
|
|
eDep[index[i]][k - 2] = zoom[i] * data[i]
|
|
|
|
|
|
|
|
res = pd.DataFrame(eDep, index=organ)
|
|
|
|
res['Sum'] = res.apply(lambda x: x.sum(), axis=1)
|
|
|
|
res.loc['Sum'] = res.apply(lambda x: x.sum())
|
|
|
|
|
|
|
|
res.to_csv('result/anl-eDep.csv')
|
|
|
|
|
|
|
|
aDose = {}
|
|
|
|
for name in index:
|
|
|
|
aDose[name] = np.zeros(shape=(37, ))
|
|
|
|
|
|
|
|
for k in range(2, 39):
|
|
|
|
data = pd.to_numeric(df.iloc[k, 1:])
|
|
|
|
|
|
|
|
for i in range(30):
|
|
|
|
aDose[index[i]][k - 2] = 30 * 86400 * zoom[i] * data[i] * 1.6 * 1e-10 / mass[k]
|
|
|
|
|
|
|
|
res = pd.DataFrame(aDose, index=organ)
|
|
|
|
res['Sum'] = res.apply(lambda x: x.sum(), axis=1)
|
|
|
|
res.loc['Sum'] = res.apply(lambda x: x.sum())
|
|
|
|
|
|
|
|
res.to_csv('result/anl-aDose.csv')
|
|
|
|
|
|
|
|
eqDose = {}
|
|
|
|
for name in index:
|
|
|
|
eqDose[name] = np.zeros(shape=(37, ))
|
|
|
|
|
|
|
|
for k in range(2, 39):
|
|
|
|
data = pd.to_numeric(df.iloc[k, 1:])
|
|
|
|
|
|
|
|
for i in range(30):
|
|
|
|
eqDose[index[i]][k - 2] = 30 * 86400 * omegaR[i] * zoom[i] * data[i] * 1.6 * 1e-10 / mass[k]
|
|
|
|
|
|
|
|
res = pd.DataFrame(eqDose, index=organ)
|
|
|
|
res['Sum'] = res.apply(lambda x: x.sum(), axis=1)
|
|
|
|
res.loc['Sum'] = res.apply(lambda x: x.sum())
|
|
|
|
|
|
|
|
res.to_csv('result/anl-eqDose.csv')
|
|
|
|
|
|
|
|
efDose = {}
|
|
|
|
for name in index:
|
|
|
|
efDose[name] = np.zeros(shape=(37, ))
|
|
|
|
|
|
|
|
for k in range(2, 39):
|
|
|
|
data = pd.to_numeric(df.iloc[k, 1:])
|
|
|
|
|
|
|
|
for i in range(30):
|
|
|
|
efDose[index[i]][k - 2] = 30 * 86400 * omegaR[i] * zoom[i] * omegaT[k] * data[i] * 1.6 * 1e-10 / mass[k]
|
|
|
|
|
|
|
|
res = pd.DataFrame(efDose, index=organ)
|
|
|
|
res['Sum'] = res.apply(lambda x: x.sum(), axis=1)
|
|
|
|
res.loc['Sum'] = res.apply(lambda x: x.sum())
|
|
|
|
|
|
|
|
res.to_csv('result/anl-efDose.csv')
|